mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Add blood vessel dataset processing script (#184)
* Add blood vessel dataset processing script * Fix syntax error * Fix syntax error * Fix syntax error * Fix bugs * Fix bugs * Fix bugs * Use safe functions and expand more apis * Use safe functions and expand more apis * Fix hard code and verify dataset integrity
This commit is contained in:
parent
5a76a715f1
commit
cb2e0d3cb1
@ -46,6 +46,34 @@ mmsegmentation
|
|||||||
│ │ │ ├── images
|
│ │ │ ├── images
|
||||||
│ │ │ │ ├── training
|
│ │ │ │ ├── training
|
||||||
│ │ │ │ ├── validation
|
│ │ │ │ ├── validation
|
||||||
|
│ ├── CHASE_DB1
|
||||||
|
│ │ ├── images
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ │ ├── annotations
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ ├── DRIVE
|
||||||
|
│ │ ├── images
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ │ ├── annotations
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ ├── HRF
|
||||||
|
│ │ ├── images
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ │ ├── annotations
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ ├── STARE
|
||||||
|
│ │ ├── images
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
│ │ ├── annotations
|
||||||
|
│ │ │ ├── training
|
||||||
|
│ │ │ ├── validation
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -93,6 +121,54 @@ If you would like to use Pascal Context dataset, please install [Detail](https:/
|
|||||||
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json
|
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### CHASE DB1
|
||||||
|
|
||||||
|
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip).
|
||||||
|
|
||||||
|
To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
The script will make directory structure automatically.
|
||||||
|
|
||||||
|
### DRIVE
|
||||||
|
|
||||||
|
The training and validation set of DRIVE could be download from [here](https://drive.grand-challenge.org/). Before that, you should register an account. Currently '1st_manual' is not provided officially.
|
||||||
|
|
||||||
|
To convert DRIVE dataset to MMSegmentation format, you should run the following command:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
The script will make directory structure automatically.
|
||||||
|
|
||||||
|
### HRF
|
||||||
|
|
||||||
|
First, download [healthy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip), [glaucoma.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip), [diabetic_retinopathy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip), [healthy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip), [glaucoma_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip) and [diabetic_retinopathy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip).
|
||||||
|
|
||||||
|
To convert HRF dataset to MMSegmentation format, you should run the following command:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip
|
||||||
|
```
|
||||||
|
|
||||||
|
The script will make directory structure automatically.
|
||||||
|
|
||||||
|
### STARE
|
||||||
|
|
||||||
|
First, download [stare-images.tar](http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar), [labels-ah.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar) and [labels-vk.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar).
|
||||||
|
|
||||||
|
To convert STARE dataset to MMSegmentation format, you should run the following command:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar
|
||||||
|
```
|
||||||
|
|
||||||
|
The script will make directory structure automatically.
|
||||||
|
|
||||||
## Inference with pretrained models
|
## Inference with pretrained models
|
||||||
|
|
||||||
We provide testing scripts to evaluate a whole dataset (Cityscapes, PASCAL VOC, ADE20k, etc.),
|
We provide testing scripts to evaluate a whole dataset (Cityscapes, PASCAL VOC, ADE20k, etc.),
|
||||||
|
@ -8,6 +8,6 @@ line_length = 79
|
|||||||
multi_line_output = 0
|
multi_line_output = 0
|
||||||
known_standard_library = setuptools
|
known_standard_library = setuptools
|
||||||
known_first_party = mmseg
|
known_first_party = mmseg
|
||||||
known_third_party = PIL,cityscapesscripts,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,torch
|
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,torch
|
||||||
no_lines_before = STDLIB,LOCALFOLDER
|
no_lines_before = STDLIB,LOCALFOLDER
|
||||||
default_section = THIRDPARTY
|
default_section = THIRDPARTY
|
||||||
|
83
tools/convert_datasets/chase_db1.py
Normal file
83
tools/convert_datasets/chase_db1.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import tempfile
|
||||||
|
import zipfile
|
||||||
|
|
||||||
|
import mmcv
|
||||||
|
|
||||||
|
CHASE_DB1_LEN = 28 * 3
|
||||||
|
TRAINING_LEN = 60
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Convert CHASE_DB1 dataset to mmsegmentation format')
|
||||||
|
parser.add_argument('dataset_path', help='path of CHASEDB1.zip')
|
||||||
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
||||||
|
parser.add_argument('-o', '--out_dir', help='output path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
dataset_path = args.dataset_path
|
||||||
|
if args.out_dir is None:
|
||||||
|
out_dir = osp.join('data', 'CHASE_DB1')
|
||||||
|
else:
|
||||||
|
out_dir = args.out_dir
|
||||||
|
|
||||||
|
print('Making directories...')
|
||||||
|
mmcv.mkdir_or_exist(out_dir)
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
print('Extracting CHASEDB1.zip...')
|
||||||
|
zip_file = zipfile.ZipFile(dataset_path)
|
||||||
|
zip_file.extractall(tmp_dir)
|
||||||
|
|
||||||
|
print('Generating training dataset...')
|
||||||
|
|
||||||
|
assert len(os.listdir(tmp_dir)) == CHASE_DB1_LEN, \
|
||||||
|
'len(os.listdir(tmp_dir)) != {}'.format(CHASE_DB1_LEN)
|
||||||
|
|
||||||
|
for img_name in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, img_name))
|
||||||
|
if osp.splitext(img_name)[1] == '.jpg':
|
||||||
|
mmcv.imwrite(img,
|
||||||
|
osp.join(out_dir, 'images', 'training', img_name))
|
||||||
|
else:
|
||||||
|
# The annotation img should be divided by 128, because some of
|
||||||
|
# the annotation imgs are not standard. We should set a
|
||||||
|
# threshold to convert the nonstandard annotation imgs. The
|
||||||
|
# value divided by 128 is equivalent to '1 if value >= 128
|
||||||
|
# else 0'
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'training',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
for img_name in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, img_name))
|
||||||
|
if osp.splitext(img_name)[1] == '.jpg':
|
||||||
|
mmcv.imwrite(
|
||||||
|
img, osp.join(out_dir, 'images', 'validation', img_name))
|
||||||
|
else:
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Removing the temporary files...')
|
||||||
|
|
||||||
|
print('Done!')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
109
tools/convert_datasets/drive.py
Normal file
109
tools/convert_datasets/drive.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import tempfile
|
||||||
|
import zipfile
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import mmcv
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Convert DRIVE dataset to mmsegmentation format')
|
||||||
|
parser.add_argument(
|
||||||
|
'training_path', help='the training part of DRIVE dataset')
|
||||||
|
parser.add_argument(
|
||||||
|
'testing_path', help='the testing part of DRIVE dataset')
|
||||||
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
||||||
|
parser.add_argument('-o', '--out_dir', help='output path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
training_path = args.training_path
|
||||||
|
testing_path = args.testing_path
|
||||||
|
if args.out_dir is None:
|
||||||
|
out_dir = osp.join('data', 'DRIVE')
|
||||||
|
else:
|
||||||
|
out_dir = args.out_dir
|
||||||
|
|
||||||
|
print('Making directories...')
|
||||||
|
mmcv.mkdir_or_exist(out_dir)
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
print('Extracting training.zip...')
|
||||||
|
zip_file = zipfile.ZipFile(training_path)
|
||||||
|
zip_file.extractall(tmp_dir)
|
||||||
|
|
||||||
|
print('Generating training dataset...')
|
||||||
|
now_dir = osp.join(tmp_dir, 'training', 'images')
|
||||||
|
for img_name in os.listdir(now_dir):
|
||||||
|
img = mmcv.imread(osp.join(now_dir, img_name))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'training',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'training', '1st_manual')
|
||||||
|
for img_name in os.listdir(now_dir):
|
||||||
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
||||||
|
ret, img = cap.read()
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'training',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Extracting test.zip...')
|
||||||
|
zip_file = zipfile.ZipFile(testing_path)
|
||||||
|
zip_file.extractall(tmp_dir)
|
||||||
|
|
||||||
|
print('Generating validation dataset...')
|
||||||
|
now_dir = osp.join(tmp_dir, 'test', 'images')
|
||||||
|
for img_name in os.listdir(now_dir):
|
||||||
|
img = mmcv.imread(osp.join(now_dir, img_name))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'validation',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'test', '1st_manual')
|
||||||
|
if osp.exists(now_dir):
|
||||||
|
for img_name in os.listdir(now_dir):
|
||||||
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
||||||
|
ret, img = cap.read()
|
||||||
|
# The annotation img should be divided by 128, because some of
|
||||||
|
# the annotation imgs are not standard. We should set a
|
||||||
|
# threshold to convert the nonstandard annotation imgs. The
|
||||||
|
# value divided by 128 is equivalent to '1 if value >= 128
|
||||||
|
# else 0'
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'test', '2nd_manual')
|
||||||
|
if osp.exists(now_dir):
|
||||||
|
for img_name in os.listdir(now_dir):
|
||||||
|
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
|
||||||
|
ret, img = cap.read()
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(img_name)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Removing the temporary files...')
|
||||||
|
|
||||||
|
print('Done!')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
110
tools/convert_datasets/hrf.py
Normal file
110
tools/convert_datasets/hrf.py
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import tempfile
|
||||||
|
import zipfile
|
||||||
|
|
||||||
|
import mmcv
|
||||||
|
|
||||||
|
HRF_LEN = 15
|
||||||
|
TRAINING_LEN = 5
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Convert HRF dataset to mmsegmentation format')
|
||||||
|
parser.add_argument('healthy_path', help='the path of healthy.zip')
|
||||||
|
parser.add_argument(
|
||||||
|
'healthy_manualsegm_path', help='the path of healthy_manualsegm.zip')
|
||||||
|
parser.add_argument('glaucoma_path', help='the path of glaucoma.zip')
|
||||||
|
parser.add_argument(
|
||||||
|
'glaucoma_manualsegm_path', help='the path of glaucoma_manualsegm.zip')
|
||||||
|
parser.add_argument(
|
||||||
|
'diabetic_retinopathy_path',
|
||||||
|
help='the path of diabetic_retinopathy.zip')
|
||||||
|
parser.add_argument(
|
||||||
|
'diabetic_retinopathy_manualsegm_path',
|
||||||
|
help='the path of diabetic_retinopathy_manualsegm.zip')
|
||||||
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
||||||
|
parser.add_argument('-o', '--out_dir', help='output path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
images_path = [
|
||||||
|
args.healthy_path, args.glaucoma_path, args.diabetic_retinopathy_path
|
||||||
|
]
|
||||||
|
annotations_path = [
|
||||||
|
args.healthy_manualsegm_path, args.glaucoma_manualsegm_path,
|
||||||
|
args.diabetic_retinopathy_manualsegm_path
|
||||||
|
]
|
||||||
|
if args.out_dir is None:
|
||||||
|
out_dir = osp.join('data', 'HRF')
|
||||||
|
else:
|
||||||
|
out_dir = args.out_dir
|
||||||
|
|
||||||
|
print('Making directories...')
|
||||||
|
mmcv.mkdir_or_exist(out_dir)
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
||||||
|
|
||||||
|
print('Generating images...')
|
||||||
|
for now_path in images_path:
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
zip_file = zipfile.ZipFile(now_path)
|
||||||
|
zip_file.extractall(tmp_dir)
|
||||||
|
|
||||||
|
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
||||||
|
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'training',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'validation',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Generating annotations...')
|
||||||
|
for now_path in annotations_path:
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
zip_file = zipfile.ZipFile(now_path)
|
||||||
|
zip_file.extractall(tmp_dir)
|
||||||
|
|
||||||
|
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
|
||||||
|
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||||
|
# The annotation img should be divided by 128, because some of
|
||||||
|
# the annotation imgs are not standard. We should set a
|
||||||
|
# threshold to convert the nonstandard annotation imgs. The
|
||||||
|
# value divided by 128 is equivalent to '1 if value >= 128
|
||||||
|
# else 0'
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'training',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(tmp_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Done!')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
165
tools/convert_datasets/stare.py
Normal file
165
tools/convert_datasets/stare.py
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
import argparse
|
||||||
|
import gzip
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import tarfile
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
import mmcv
|
||||||
|
|
||||||
|
STARE_LEN = 20
|
||||||
|
TRAINING_LEN = 10
|
||||||
|
|
||||||
|
|
||||||
|
def un_gz(src, dst):
|
||||||
|
g_file = gzip.GzipFile(src)
|
||||||
|
with open(dst, 'wb+') as f:
|
||||||
|
f.write(g_file.read())
|
||||||
|
g_file.close()
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description='Convert STARE dataset to mmsegmentation format')
|
||||||
|
parser.add_argument('image_path', help='the path of stare-images.tar')
|
||||||
|
parser.add_argument('labels_ah', help='the path of labels-ah.tar')
|
||||||
|
parser.add_argument('labels_vk', help='the path of labels-vk.tar')
|
||||||
|
parser.add_argument('--tmp_dir', help='path of the temporary directory')
|
||||||
|
parser.add_argument('-o', '--out_dir', help='output path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
image_path = args.image_path
|
||||||
|
labels_ah = args.labels_ah
|
||||||
|
labels_vk = args.labels_vk
|
||||||
|
if args.out_dir is None:
|
||||||
|
out_dir = osp.join('data', 'STARE')
|
||||||
|
else:
|
||||||
|
out_dir = args.out_dir
|
||||||
|
|
||||||
|
print('Making directories...')
|
||||||
|
mmcv.mkdir_or_exist(out_dir)
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
||||||
|
|
||||||
|
print('Extracting stare-images.tar...')
|
||||||
|
with tarfile.open(image_path) as f:
|
||||||
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
||||||
|
|
||||||
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
||||||
|
un_gz(
|
||||||
|
osp.join(tmp_dir, 'gz', filename),
|
||||||
|
osp.join(tmp_dir, 'files',
|
||||||
|
osp.splitext(filename)[0]))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'files')
|
||||||
|
|
||||||
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
||||||
|
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'training',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img,
|
||||||
|
osp.join(out_dir, 'images', 'validation',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Removing the temporary files...')
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
||||||
|
|
||||||
|
print('Extracting labels-ah.tar...')
|
||||||
|
with tarfile.open(labels_ah) as f:
|
||||||
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
||||||
|
|
||||||
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
||||||
|
un_gz(
|
||||||
|
osp.join(tmp_dir, 'gz', filename),
|
||||||
|
osp.join(tmp_dir, 'files',
|
||||||
|
osp.splitext(filename)[0]))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'files')
|
||||||
|
|
||||||
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
||||||
|
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
# The annotation img should be divided by 128, because some of
|
||||||
|
# the annotation imgs are not standard. We should set a threshold
|
||||||
|
# to convert the nonstandard annotation imgs. The value divided by
|
||||||
|
# 128 equivalent to '1 if value >= 128 else 0'
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'training',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Removing the temporary files...')
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
|
||||||
|
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
|
||||||
|
|
||||||
|
print('Extracting labels-vk.tar...')
|
||||||
|
with tarfile.open(labels_vk) as f:
|
||||||
|
f.extractall(osp.join(tmp_dir, 'gz'))
|
||||||
|
|
||||||
|
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
|
||||||
|
un_gz(
|
||||||
|
osp.join(tmp_dir, 'gz', filename),
|
||||||
|
osp.join(tmp_dir, 'files',
|
||||||
|
osp.splitext(filename)[0]))
|
||||||
|
|
||||||
|
now_dir = osp.join(tmp_dir, 'files')
|
||||||
|
|
||||||
|
assert len(os.listdir(now_dir)) == STARE_LEN, \
|
||||||
|
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'training',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
|
||||||
|
img = mmcv.imread(osp.join(now_dir, filename))
|
||||||
|
mmcv.imwrite(
|
||||||
|
img[:, :, 0] // 128,
|
||||||
|
osp.join(out_dir, 'annotations', 'validation',
|
||||||
|
osp.splitext(filename)[0] + '.jpg'))
|
||||||
|
|
||||||
|
print('Removing the temporary files...')
|
||||||
|
|
||||||
|
print('Done!')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user