Add blood vessel dataset processing script (#184)

* Add blood vessel dataset processing script

* Fix syntax error

* Fix syntax error

* Fix syntax error

* Fix bugs

* Fix bugs

* Fix bugs

* Use safe functions and expand more apis

* Use safe functions and expand more apis

* Fix hard code and verify dataset integrity
pull/202/head
yamengxi 2020-10-18 16:22:42 +08:00 committed by GitHub
parent 5a76a715f1
commit cb2e0d3cb1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 544 additions and 1 deletions

View File

@ -46,6 +46,34 @@ mmsegmentation
│ │ │ ├── images
│ │ │ │ ├── training
│ │ │ │ ├── validation
│ ├── CHASE_DB1
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── DRIVE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── HRF
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
│ ├── STARE
│ │ ├── images
│ │ │ ├── training
│ │ │ ├── validation
│ │ ├── annotations
│ │ │ ├── training
│ │ │ ├── validation
```
@ -93,6 +121,54 @@ If you would like to use Pascal Context dataset, please install [Detail](https:/
python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json
```
### CHASE DB1
The training and validation set of CHASE DB1 could be download from [here](https://staffnet.kingston.ac.uk/~ku15565/CHASE_DB1/assets/CHASEDB1.zip).
To convert CHASE DB1 dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/chase_db1.py /path/to/CHASEDB1.zip
```
The script will make directory structure automatically.
### DRIVE
The training and validation set of DRIVE could be download from [here](https://drive.grand-challenge.org/). Before that, you should register an account. Currently '1st_manual' is not provided officially.
To convert DRIVE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/drive.py /path/to/training.zip /path/to/test.zip
```
The script will make directory structure automatically.
### HRF
First, download [healthy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy.zip), [glaucoma.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma.zip), [diabetic_retinopathy.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy.zip), [healthy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/healthy_manualsegm.zip), [glaucoma_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/glaucoma_manualsegm.zip) and [diabetic_retinopathy_manualsegm.zip](https://www5.cs.fau.de/fileadmin/research/datasets/fundus-images/diabetic_retinopathy_manualsegm.zip).
To convert HRF dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/hrf.py /path/to/healthy.zip /path/to/healthy_manualsegm.zip /path/to/glaucoma.zip /path/to/glaucoma_manualsegm.zip /path/to/diabetic_retinopathy.zip /path/to/diabetic_retinopathy_manualsegm.zip
```
The script will make directory structure automatically.
### STARE
First, download [stare-images.tar](http://cecas.clemson.edu/~ahoover/stare/probing/stare-images.tar), [labels-ah.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-ah.tar) and [labels-vk.tar](http://cecas.clemson.edu/~ahoover/stare/probing/labels-vk.tar).
To convert STARE dataset to MMSegmentation format, you should run the following command:
```shell
python tools/convert_datasets/stare.py /path/to/stare-images.tar /path/to/labels-ah.tar /path/to/labels-vk.tar
```
The script will make directory structure automatically.
## Inference with pretrained models
We provide testing scripts to evaluate a whole dataset (Cityscapes, PASCAL VOC, ADE20k, etc.),

View File

@ -8,6 +8,6 @@ line_length = 79
multi_line_output = 0
known_standard_library = setuptools
known_first_party = mmseg
known_third_party = PIL,cityscapesscripts,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,torch
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,pytest,scipy,torch
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY

View File

@ -0,0 +1,83 @@
import argparse
import os
import os.path as osp
import tempfile
import zipfile
import mmcv
CHASE_DB1_LEN = 28 * 3
TRAINING_LEN = 60
def parse_args():
parser = argparse.ArgumentParser(
description='Convert CHASE_DB1 dataset to mmsegmentation format')
parser.add_argument('dataset_path', help='path of CHASEDB1.zip')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
dataset_path = args.dataset_path
if args.out_dir is None:
out_dir = osp.join('data', 'CHASE_DB1')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
print('Extracting CHASEDB1.zip...')
zip_file = zipfile.ZipFile(dataset_path)
zip_file.extractall(tmp_dir)
print('Generating training dataset...')
assert len(os.listdir(tmp_dir)) == CHASE_DB1_LEN, \
'len(os.listdir(tmp_dir)) != {}'.format(CHASE_DB1_LEN)
for img_name in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(tmp_dir, img_name))
if osp.splitext(img_name)[1] == '.jpg':
mmcv.imwrite(img,
osp.join(out_dir, 'images', 'training', img_name))
else:
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a
# threshold to convert the nonstandard annotation imgs. The
# value divided by 128 is equivalent to '1 if value >= 128
# else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(img_name)[0] + '.jpg'))
for img_name in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(tmp_dir, img_name))
if osp.splitext(img_name)[1] == '.jpg':
mmcv.imwrite(
img, osp.join(out_dir, 'images', 'validation', img_name))
else:
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(img_name)[0] + '.jpg'))
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,109 @@
import argparse
import os
import os.path as osp
import tempfile
import zipfile
import cv2
import mmcv
def parse_args():
parser = argparse.ArgumentParser(
description='Convert DRIVE dataset to mmsegmentation format')
parser.add_argument(
'training_path', help='the training part of DRIVE dataset')
parser.add_argument(
'testing_path', help='the testing part of DRIVE dataset')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
training_path = args.training_path
testing_path = args.testing_path
if args.out_dir is None:
out_dir = osp.join('data', 'DRIVE')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
print('Extracting training.zip...')
zip_file = zipfile.ZipFile(training_path)
zip_file.extractall(tmp_dir)
print('Generating training dataset...')
now_dir = osp.join(tmp_dir, 'training', 'images')
for img_name in os.listdir(now_dir):
img = mmcv.imread(osp.join(now_dir, img_name))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'training',
osp.splitext(img_name)[0] + '.jpg'))
now_dir = osp.join(tmp_dir, 'training', '1st_manual')
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(img_name)[0] + '.jpg'))
print('Extracting test.zip...')
zip_file = zipfile.ZipFile(testing_path)
zip_file.extractall(tmp_dir)
print('Generating validation dataset...')
now_dir = osp.join(tmp_dir, 'test', 'images')
for img_name in os.listdir(now_dir):
img = mmcv.imread(osp.join(now_dir, img_name))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'validation',
osp.splitext(img_name)[0] + '.jpg'))
now_dir = osp.join(tmp_dir, 'test', '1st_manual')
if osp.exists(now_dir):
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a
# threshold to convert the nonstandard annotation imgs. The
# value divided by 128 is equivalent to '1 if value >= 128
# else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(img_name)[0] + '.jpg'))
now_dir = osp.join(tmp_dir, 'test', '2nd_manual')
if osp.exists(now_dir):
for img_name in os.listdir(now_dir):
cap = cv2.VideoCapture(osp.join(now_dir, img_name))
ret, img = cap.read()
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(img_name)[0] + '.jpg'))
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,110 @@
import argparse
import os
import os.path as osp
import tempfile
import zipfile
import mmcv
HRF_LEN = 15
TRAINING_LEN = 5
def parse_args():
parser = argparse.ArgumentParser(
description='Convert HRF dataset to mmsegmentation format')
parser.add_argument('healthy_path', help='the path of healthy.zip')
parser.add_argument(
'healthy_manualsegm_path', help='the path of healthy_manualsegm.zip')
parser.add_argument('glaucoma_path', help='the path of glaucoma.zip')
parser.add_argument(
'glaucoma_manualsegm_path', help='the path of glaucoma_manualsegm.zip')
parser.add_argument(
'diabetic_retinopathy_path',
help='the path of diabetic_retinopathy.zip')
parser.add_argument(
'diabetic_retinopathy_manualsegm_path',
help='the path of diabetic_retinopathy_manualsegm.zip')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
images_path = [
args.healthy_path, args.glaucoma_path, args.diabetic_retinopathy_path
]
annotations_path = [
args.healthy_manualsegm_path, args.glaucoma_manualsegm_path,
args.diabetic_retinopathy_manualsegm_path
]
if args.out_dir is None:
out_dir = osp.join('data', 'HRF')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
print('Generating images...')
for now_path in images_path:
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
zip_file = zipfile.ZipFile(now_path)
zip_file.extractall(tmp_dir)
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'training',
osp.splitext(filename)[0] + '.jpg'))
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'validation',
osp.splitext(filename)[0] + '.jpg'))
print('Generating annotations...')
for now_path in annotations_path:
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
zip_file = zipfile.ZipFile(now_path)
zip_file.extractall(tmp_dir)
assert len(os.listdir(tmp_dir)) == HRF_LEN, \
'len(os.listdir(tmp_dir)) != {}'.format(HRF_LEN)
for filename in sorted(os.listdir(tmp_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(tmp_dir, filename))
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a
# threshold to convert the nonstandard annotation imgs. The
# value divided by 128 is equivalent to '1 if value >= 128
# else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.jpg'))
for filename in sorted(os.listdir(tmp_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(tmp_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.jpg'))
print('Done!')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,165 @@
import argparse
import gzip
import os
import os.path as osp
import tarfile
import tempfile
import mmcv
STARE_LEN = 20
TRAINING_LEN = 10
def un_gz(src, dst):
g_file = gzip.GzipFile(src)
with open(dst, 'wb+') as f:
f.write(g_file.read())
g_file.close()
def parse_args():
parser = argparse.ArgumentParser(
description='Convert STARE dataset to mmsegmentation format')
parser.add_argument('image_path', help='the path of stare-images.tar')
parser.add_argument('labels_ah', help='the path of labels-ah.tar')
parser.add_argument('labels_vk', help='the path of labels-vk.tar')
parser.add_argument('--tmp_dir', help='path of the temporary directory')
parser.add_argument('-o', '--out_dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
image_path = args.image_path
labels_ah = args.labels_ah
labels_vk = args.labels_vk
if args.out_dir is None:
out_dir = osp.join('data', 'STARE')
else:
out_dir = args.out_dir
print('Making directories...')
mmcv.mkdir_or_exist(out_dir)
mmcv.mkdir_or_exist(osp.join(out_dir, 'images'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'images', 'validation'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'training'))
mmcv.mkdir_or_exist(osp.join(out_dir, 'annotations', 'validation'))
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting stare-images.tar...')
with tarfile.open(image_path) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'training',
osp.splitext(filename)[0] + '.jpg'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img,
osp.join(out_dir, 'images', 'validation',
osp.splitext(filename)[0] + '.jpg'))
print('Removing the temporary files...')
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting labels-ah.tar...')
with tarfile.open(labels_ah) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
# The annotation img should be divided by 128, because some of
# the annotation imgs are not standard. We should set a threshold
# to convert the nonstandard annotation imgs. The value divided by
# 128 equivalent to '1 if value >= 128 else 0'
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.jpg'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.jpg'))
print('Removing the temporary files...')
with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir:
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'gz'))
mmcv.mkdir_or_exist(osp.join(tmp_dir, 'files'))
print('Extracting labels-vk.tar...')
with tarfile.open(labels_vk) as f:
f.extractall(osp.join(tmp_dir, 'gz'))
for filename in os.listdir(osp.join(tmp_dir, 'gz')):
un_gz(
osp.join(tmp_dir, 'gz', filename),
osp.join(tmp_dir, 'files',
osp.splitext(filename)[0]))
now_dir = osp.join(tmp_dir, 'files')
assert len(os.listdir(now_dir)) == STARE_LEN, \
'len(os.listdir(now_dir)) != {}'.format(STARE_LEN)
for filename in sorted(os.listdir(now_dir))[:TRAINING_LEN]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'training',
osp.splitext(filename)[0] + '.jpg'))
for filename in sorted(os.listdir(now_dir))[TRAINING_LEN:]:
img = mmcv.imread(osp.join(now_dir, filename))
mmcv.imwrite(
img[:, :, 0] // 128,
osp.join(out_dir, 'annotations', 'validation',
osp.splitext(filename)[0] + '.jpg'))
print('Removing the temporary files...')
print('Done!')
if __name__ == '__main__':
main()