[Enhancement] Add Dev tools to boost develop (#798)

* Modify default work dir when training.

* Refactor gather_models.py.

* Add train and test matching list.

* Regression benchmark list.

* lower readme name to upper readme name.

* Add url check tool and model inference test tool.

* Modify tool name.

* Support duplicate mode of log json url check.

* Add regression benchmark evaluation automatic tool.

* Add train script generator.

* Only Support script running.

* Add evaluation results gather.

* Add exec Authority.

* Automatically make checkpoint root folder.

* Modify gather results save path.

* Coarse-grained train results gather tool.

* Complete benchmark train script.

* Make some little modifications.

* Fix checkpoint urls.

* Fix unet checkpoint urls.

* Fix fast scnn & fcn checkpoint url.

* Fix fast scnn checkpoint urls.

* Fix fast scnn url.

* Add differential results calculation.

* Add differential results of regression benchmark train results.

* Add an extra argument to select model.

* Update nonlocal_net & hrnet checkpoint url.

* Fix checkpoint url of hrnet and Fix some tta evaluation results and modify gather models tool.

* Modify fast scnn checkpoint url.

* Resolve new comments.

* Fix url check status code bug.

* Resolve some comments.

* Modify train scripts generator.

* Modify work_dir of regression benchmark results.

* model gather tool modification.
This commit is contained in:
sennnnn 2021-09-03 00:44:51 +08:00 committed by GitHub
parent 4981ff68c2
commit d35fbbdb47
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
30 changed files with 1051 additions and 142 deletions

133
.dev/batch_test_list.py Normal file
View File

@ -0,0 +1,133 @@
# yapf: disable
# Inference Speed is tested on NVIDIA V100
hrnet = [
dict(
config='configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py',
checkpoint='fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth', # noqa
eval='mIoU',
metric=dict(mIoU=33.0),
),
dict(
config='configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py',
checkpoint='fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth', # noqa
eval='mIoU',
metric=dict(mIoU=76.31),
),
dict(
config='configs/hrnet/fcn_hr48_512x512_160k_ade20k.py',
checkpoint='fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth',
eval='mIoU',
metric=dict(mIoU=42.02),
),
dict(
config='configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py',
checkpoint='fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.65),
),
]
pspnet = [
dict(
config='configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py',
checkpoint='pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth', # noqa
eval='mIoU',
metric=dict(mIoU=78.55),
),
dict(
config='configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py',
checkpoint='pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth', # noqa
eval='mIoU',
metric=dict(mIoU=79.76),
),
dict(
config='configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py',
checkpoint='pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth', # noqa
eval='mIoU',
metric=dict(mIoU=44.39),
),
dict(
config='configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py',
checkpoint='pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth', # noqa
eval='mIoU',
metric=dict(mIoU=42.48),
),
]
resnest = [
dict(
config='configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py',
checkpoint='pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth', # noqa
eval='mIoU',
metric=dict(mIoU=45.44),
),
dict(
config='configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py',
checkpoint='pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth', # noqa
eval='mIoU',
metric=dict(mIoU=78.57),
),
]
fastscnn = [
dict(
config='configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py',
checkpoint='fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth',
eval='mIoU',
metric=dict(mIoU=70.96),
)
]
deeplabv3plus = [
dict(
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py', # noqa
checkpoint='deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.98),
),
dict(
config='configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py', # noqa
checkpoint='deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.97),
),
dict(
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py', # noqa
checkpoint='deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.09),
),
dict(
config='configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py', # noqa
checkpoint='deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth', # noqa
eval='mIoU',
metric=dict(mIoU=79.83),
),
]
vit = [
dict(
config='configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py',
checkpoint='upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth',
eval='mIoU',
metric=dict(mIoU=47.73),
),
dict(
config='configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py',
checkpoint='upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth',
eval='mIoU',
metric=dict(mIoU=43.52),
),
]
fp16 = [
dict(
config='configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py', # noqa
checkpoint='deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth', # noqa
eval='mIoU',
metric=dict(mIoU=80.46),
)
]
swin = [
dict(
config='configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py', # noqa
checkpoint='upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', # noqa
eval='mIoU',
metric=dict(mIoU=44.41),
)
]
# yapf: enable

19
.dev/batch_train_list.txt Normal file
View File

@ -0,0 +1,19 @@
configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py
configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py
configs/hrnet/fcn_hr48_512x512_160k_ade20k.py
configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py
configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py
configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py
configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py
configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py
configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py
configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py
configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py
configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py
configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py
configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py
configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py
configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py

41
.dev/benchmark_evaluation.sh Executable file
View File

@ -0,0 +1,41 @@
PARTITION=$1
CHECKPOINT_DIR=$2
echo 'configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr18s_512x512_160k_ade20k configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py $CHECKPOINT_DIR/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/fcn_hr18s_512x512_160k_ade20k --options dist_params.port=28171 &
echo 'configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr18s_512x1024_160k_cityscapes configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py $CHECKPOINT_DIR/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/fcn_hr18s_512x1024_160k_cityscapes --options dist_params.port=28172 &
echo 'configs/hrnet/fcn_hr48_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr48_512x512_160k_ade20k configs/hrnet/fcn_hr48_512x512_160k_ade20k.py $CHECKPOINT_DIR/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/fcn_hr48_512x512_160k_ade20k --options dist_params.port=28173 &
echo 'configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fcn_hr48_512x1024_160k_cityscapes configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py $CHECKPOINT_DIR/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/fcn_hr48_512x1024_160k_cityscapes --options dist_params.port=28174 &
echo 'configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r50-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_r50-d8_512x1024_80k_cityscapes --options dist_params.port=28175 &
echo 'configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r101-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_r101-d8_512x1024_80k_cityscapes --options dist_params.port=28176 &
echo 'configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r101-d8_512x512_160k_ade20k configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_r101-d8_512x512_160k_ade20k --options dist_params.port=28177 &
echo 'configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_r50-d8_512x512_160k_ade20k configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_r50-d8_512x512_160k_ade20k --options dist_params.port=28178 &
echo 'configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_s101-d8_512x512_160k_ade20k configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py $CHECKPOINT_DIR/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_s101-d8_512x512_160k_ade20k --options dist_params.port=28179 &
echo 'configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION pspnet_s101-d8_512x1024_80k_cityscapes configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/pspnet_s101-d8_512x1024_80k_cityscapes --options dist_params.port=28180 &
echo 'configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION fast_scnn_lr0.12_8x4_160k_cityscapes configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py $CHECKPOINT_DIR/fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/fast_scnn_lr0.12_8x4_160k_cityscapes --options dist_params.port=28181 &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r101-d8_769x769_80k_cityscapes --options dist_params.port=28182 &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r101-d8_512x1024_80k_cityscapes --options dist_params.port=28183 &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r50-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r50-d8_512x1024_80k_cityscapes --options dist_params.port=28184 &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r50-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r50-d8_769x769_80k_cityscapes --options dist_params.port=28185 &
echo 'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_vit-b16_ln_mln_512x512_160k_ade20k configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_vit-b16_ln_mln_512x512_160k_ade20k --options dist_params.port=28186 &
echo 'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_deit-s16_ln_mln_512x512_160k_ade20k configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py $CHECKPOINT_DIR/upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_deit-s16_ln_mln_512x512_160k_ade20k --options dist_params.port=28187 &
echo 'configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py $CHECKPOINT_DIR/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes --options dist_params.port=28188 &
echo 'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 tools/slurm_test.sh $PARTITION upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py $CHECKPOINT_DIR/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth --eval mIoU --work-dir work_dirs/benchmark_evaluation/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K --options dist_params.port=28189 &

149
.dev/benchmark_inference.py Normal file
View File

@ -0,0 +1,149 @@
# Copyright (c) OpenMMLab. All rights reserved.
import hashlib
import logging
import os
import os.path as osp
import warnings
from argparse import ArgumentParser
import requests
from mmcv import Config
from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot
from mmseg.utils import get_root_logger
# ignore warnings when segmentors inference
warnings.filterwarnings('ignore')
def download_checkpoint(checkpoint_name, model_name, config_name, collect_dir):
"""Download checkpoint and check if hash code is true."""
url = f'https://download.openmmlab.com/mmsegmentation/v0.5/{model_name}/{config_name}/{checkpoint_name}' # noqa
r = requests.get(url)
assert r.status_code != 403, f'{url} Access denied.'
with open(osp.join(collect_dir, checkpoint_name), 'wb') as code:
code.write(r.content)
true_hash_code = osp.splitext(checkpoint_name)[0].split('-')[1]
# check hash code
with open(osp.join(collect_dir, checkpoint_name), 'rb') as fp:
sha256_cal = hashlib.sha256()
sha256_cal.update(fp.read())
cur_hash_code = sha256_cal.hexdigest()[:8]
assert true_hash_code == cur_hash_code, f'{url} download failed, '
'incomplete downloaded file or url invalid.'
if cur_hash_code != true_hash_code:
os.remove(osp.join(collect_dir, checkpoint_name))
def parse_args():
parser = ArgumentParser()
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint_root', help='Checkpoint file root path')
parser.add_argument(
'-i', '--img', default='demo/demo.png', help='Image file')
parser.add_argument('-a', '--aug', action='store_true', help='aug test')
parser.add_argument('-m', '--model-name', help='model name to inference')
parser.add_argument(
'-s', '--show', action='store_true', help='show results')
parser.add_argument(
'-d', '--device', default='cuda:0', help='Device used for inference')
args = parser.parse_args()
return args
def inference_model(config_name, checkpoint, args, logger=None):
cfg = Config.fromfile(config_name)
if args.aug:
if 'flip' in cfg.data.test.pipeline[
1] and 'img_scale' in cfg.data.test.pipeline[1]:
cfg.data.test.pipeline[1].img_ratios = [
0.5, 0.75, 1.0, 1.25, 1.5, 1.75
]
cfg.data.test.pipeline[1].flip = True
else:
if logger is not None:
logger.error(f'{config_name}: unable to start aug test')
else:
print(f'{config_name}: unable to start aug test', flush=True)
model = init_segmentor(cfg, checkpoint, device=args.device)
# test a single image
result = inference_segmentor(model, args.img)
# show the results
if args.show:
show_result_pyplot(model, args.img, result)
return result
# Sample test whether the inference code is correct
def main(args):
config = Config.fromfile(args.config)
if not os.path.exists(args.checkpoint_root):
os.makedirs(args.checkpoint_root, 0o775)
# test single model
if args.model_name:
if args.model_name in config:
model_infos = config[args.model_name]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
config_name = model_info['config'].strip()
print(f'processing: {config_name}', flush=True)
checkpoint = osp.join(args.checkpoint_root,
model_info['checkpoint'].strip())
try:
# build the model from a config file and a checkpoint file
inference_model(config_name, checkpoint, args)
except Exception:
print(f'{config_name} test failed!')
continue
return
else:
raise RuntimeError('model name input error.')
# test all model
logger = get_root_logger(
log_file='benchmark_inference_image.log', log_level=logging.ERROR)
for model_name in config:
model_infos = config[model_name]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
print('processing: ', model_info['config'], flush=True)
config_path = model_info['config'].strip()
config_name = osp.splitext(osp.basename(config_path))[0]
checkpoint_name = model_info['checkpoint'].strip()
checkpoint = osp.join(args.checkpoint_root, checkpoint_name)
# ensure checkpoint exists
try:
if not osp.exists(checkpoint):
download_checkpoint(checkpoint_name, model_name,
config_name.rstrip('.py'),
args.checkpoint_root)
except Exception:
logger.error(f'{checkpoint_name} download error')
continue
# test model inference with checkpoint
try:
# build the model from a config file and a checkpoint file
inference_model(config_path, checkpoint, args, logger)
except Exception as e:
logger.error(f'{config_path} " : {repr(e)}')
if __name__ == '__main__':
args = parse_args()
main(args)

40
.dev/benchmark_train.sh Executable file
View File

@ -0,0 +1,40 @@
PARTITION=$1
echo 'configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION fcn_hr18s_512x512_160k_ade20k configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24727 --work-dir work_dirs/hrnet/fcn_hr18s_512x512_160k_ade20k >/dev/null &
echo 'configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION fcn_hr18s_512x1024_160k_cityscapes configs/hrnet/fcn_hr18s_512x1024_160k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24728 --work-dir work_dirs/hrnet/fcn_hr18s_512x1024_160k_cityscapes >/dev/null &
echo 'configs/hrnet/fcn_hr48_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION fcn_hr48_512x512_160k_ade20k configs/hrnet/fcn_hr48_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24729 --work-dir work_dirs/hrnet/fcn_hr48_512x512_160k_ade20k >/dev/null &
echo 'configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION fcn_hr48_512x1024_160k_cityscapes configs/hrnet/fcn_hr48_512x1024_160k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24730 --work-dir work_dirs/hrnet/fcn_hr48_512x1024_160k_cityscapes >/dev/null &
echo 'configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_r50-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24731 --work-dir work_dirs/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes >/dev/null &
echo 'configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_r101-d8_512x1024_80k_cityscapes configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24732 --work-dir work_dirs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes >/dev/null &
echo 'configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_r101-d8_512x512_160k_ade20k configs/pspnet/pspnet_r101-d8_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24733 --work-dir work_dirs/pspnet/pspnet_r101-d8_512x512_160k_ade20k >/dev/null &
echo 'configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_r50-d8_512x512_160k_ade20k configs/pspnet/pspnet_r50-d8_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24734 --work-dir work_dirs/pspnet/pspnet_r50-d8_512x512_160k_ade20k >/dev/null &
echo 'configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_s101-d8_512x512_160k_ade20k configs/resnest/pspnet_s101-d8_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24735 --work-dir work_dirs/resnest/pspnet_s101-d8_512x512_160k_ade20k >/dev/null &
echo 'configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION pspnet_s101-d8_512x1024_80k_cityscapes configs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24736 --work-dir work_dirs/resnest/pspnet_s101-d8_512x1024_80k_cityscapes >/dev/null &
echo 'configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION fast_scnn_lr0.12_8x4_160k_cityscapes configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24737 --work-dir work_dirs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes >/dev/null &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r101-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24738 --work-dir work_dirs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes >/dev/null &
echo 'configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24739 --work-dir work_dirs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes >/dev/null &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r50-d8_512x1024_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24740 --work-dir work_dirs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes >/dev/null &
echo 'configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r50-d8_769x769_80k_cityscapes configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24741 --work-dir work_dirs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes >/dev/null &
echo 'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py' &
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_vit-b16_ln_mln_512x512_160k_ade20k configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24742 --work-dir work_dirs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k >/dev/null &
echo 'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py' &
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_deit-s16_ln_mln_512x512_160k_ade20k configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24743 --work-dir work_dirs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k >/dev/null &
echo 'configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py' &
GPUS=4 GPUS_PER_NODE=4 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24744 --work-dir work_dirs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes >/dev/null &
echo 'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py' &
GPUS=8 GPUS_PER_NODE=8 CPUS_PER_TASK=2 ./tools/slurm_train.sh $PARTITION upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py --options checkpoint_config.max_keep_ckpts=1 dist_params.port=24745 --work-dir work_dirs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K >/dev/null &

101
.dev/check_urls.py Normal file
View File

@ -0,0 +1,101 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import os
from argparse import ArgumentParser
import requests
import yaml as yml
from mmseg.utils import get_root_logger
def check_url(url):
"""Check url response status.
Args:
url (str): url needed to check.
Returns:
int, bool: status code and check flag.
"""
flag = True
r = requests.head(url)
status_code = r.status_code
if status_code == 403 or status_code == 404:
flag = False
return status_code, flag
def parse_args():
parser = ArgumentParser('url valid check.')
parser.add_argument(
'-m',
'--model-name',
type=str,
help='Select the model needed to check')
args = parser.parse_args()
return args
def main():
args = parse_args()
model_name = args.model_name
# yml path generate.
# If model_name is not set, script will check all of the models.
if model_name is not None:
yml_list = [(model_name, f'configs/{model_name}/{model_name}.yml')]
else:
# check all
yml_list = [(x, f'configs/{x}/{x}.yml') for x in os.listdir('configs/')
if x != '_base_']
logger = get_root_logger(log_file='url_check.log', log_level=logging.ERROR)
for model_name, yml_path in yml_list:
# Default yaml loader unsafe.
model_infos = yml.load(
open(yml_path, 'r'), Loader=yml.CLoader)['Models']
for model_info in model_infos:
config_name = model_info['Name']
checkpoint_url = model_info['Weights']
# checkpoint url check
status_code, flag = check_url(checkpoint_url)
if flag:
logger.info(f'checkpoint | {config_name} | {checkpoint_url} | '
f'{status_code} valid')
else:
logger.error(
f'checkpoint | {config_name} | {checkpoint_url} | '
f'{status_code} | error')
# log_json check
checkpoint_name = checkpoint_url.split('/')[-1]
model_time = '-'.join(checkpoint_name.split('-')[:-1]).replace(
f'{config_name}_', '')
# two style of log_json name
# use '_' to link model_time (will be deprecated)
log_json_url_1 = f'https://download.openmmlab.com/mmsegmentation/v0.5/{model_name}/{config_name}/{config_name}_{model_time}.log.json' # noqa
status_code_1, flag_1 = check_url(log_json_url_1)
# use '-' to link model_time
log_json_url_2 = f'https://download.openmmlab.com/mmsegmentation/v0.5/{model_name}/{config_name}/{config_name}-{model_time}.log.json' # noqa
status_code_2, flag_2 = check_url(log_json_url_2)
if flag_1 or flag_2:
if flag_1:
logger.info(
f'log.json | {config_name} | {log_json_url_1} | '
f'{status_code_1} | valid')
else:
logger.info(
f'log.json | {config_name} | {log_json_url_2} | '
f'{status_code_2} | valid')
else:
logger.error(
f'log.json | {config_name} | {log_json_url_1} & '
f'{log_json_url_2} | {status_code_1} & {status_code_2} | '
'error')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,91 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import os.path as osp
import mmcv
from mmcv import Config
def parse_args():
parser = argparse.ArgumentParser(
description='Gather benchmarked model evaluation results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'--out',
type=str,
default='benchmark_evaluation_info.json',
help='output path of gathered metrics and compared '
'results to be stored')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
root_path = args.root
metrics_out = args.out
result_dict = {}
cfg = Config.fromfile(args.config)
for model_key in cfg:
model_infos = cfg[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
previous_metrics = model_info['metric']
config = model_info['config'].strip()
fname, _ = osp.splitext(osp.basename(config))
# Load benchmark evaluation json
metric_json_dir = osp.join(root_path, fname)
if not osp.exists(metric_json_dir):
print(f'{metric_json_dir} not existed.')
continue
json_list = glob.glob(osp.join(metric_json_dir, '*.json'))
if len(json_list) == 0:
print(f'There is no eval json in {metric_json_dir}.')
continue
log_json_path = list(sorted(json_list))[-1]
metric = mmcv.load(log_json_path)
if config not in metric.get('config', {}):
print(f'{config} not included in {log_json_path}')
continue
# Compare between new benchmark results and previous metrics
differential_results = dict()
new_metrics = dict()
for record_metric_key in previous_metrics:
if record_metric_key not in metric['metric']:
raise KeyError('record_metric_key not exist, please '
'check your config')
old_metric = previous_metrics[record_metric_key]
new_metric = round(metric['metric'][record_metric_key] * 100,
2)
differential = new_metric - old_metric
flag = '+' if differential > 0 else '-'
differential_results[
record_metric_key] = f'{flag}{abs(differential):.2f}'
new_metrics[record_metric_key] = new_metric
result_dict[config] = dict(
differential=differential_results,
previous=previous_metrics,
new=new_metrics)
if metrics_out:
mmcv.dump(result_dict, metrics_out, indent=4)
print('===================================')
for config_name, metrics in result_dict.items():
print(config_name, metrics)
print('===================================')

View File

@ -0,0 +1,100 @@
import argparse
import glob
import os.path as osp
import mmcv
from gather_models import get_final_results
from mmcv import Config
def parse_args():
parser = argparse.ArgumentParser(
description='Gather benchmarked models train results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'--out',
type=str,
default='benchmark_train_info.json',
help='output path of gathered metrics to be stored')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
root_path = args.root
metrics_out = args.out
evaluation_cfg = Config.fromfile(args.config)
result_dict = {}
for model_key in evaluation_cfg:
model_infos = evaluation_cfg[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
config = model_info['config']
# benchmark train dir
model_name = osp.split(osp.dirname(config))[1]
config_name = osp.splitext(osp.basename(config))[0]
exp_dir = osp.join(root_path, model_name, config_name)
if not osp.exists(exp_dir):
print(f'{config} hasn\'t {exp_dir}')
continue
# parse config
cfg = mmcv.Config.fromfile(config)
total_iters = cfg.runner.max_iters
exp_metric = cfg.evaluation.metric
if not isinstance(exp_metric, list):
exp_metrics = [exp_metric]
# determine whether total_iters ckpt exists
ckpt_path = f'iter_{total_iters}.pth'
if not osp.exists(osp.join(exp_dir, ckpt_path)):
print(f'{config} hasn\'t {ckpt_path}')
continue
# only the last log json counts
log_json_path = list(
sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
# extract metric value
model_performance = get_final_results(log_json_path, total_iters)
if model_performance is None:
print(f'log file error: {log_json_path}')
continue
differential_results = dict()
old_results = dict()
new_results = dict()
for metric_key in model_performance:
if metric_key in ['mIoU']:
metric = round(model_performance[metric_key] * 100, 2)
old_metric = model_info['metric'][metric_key]
old_results[metric_key] = old_metric
new_results[metric_key] = metric
differential = metric - old_metric
flag = '+' if differential > 0 else '-'
differential_results[
metric_key] = f'{flag}{abs(differential):.2f}'
result_dict[config] = dict(
differential_results=differential_results,
old_results=old_results,
new_results=new_results,
)
# 4 save or print results
if metrics_out:
mmcv.dump(result_dict, metrics_out, indent=4)
print('===================================')
for config_name, metrics in result_dict.items():
print(config_name, metrics)
print('===================================')

View File

@ -1,11 +1,11 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import glob
import hashlib
import json
import os
import os.path as osp
import shutil
import subprocess
import mmcv
import torch
@ -14,6 +14,14 @@ import torch
RESULTS_LUT = ['mIoU', 'mAcc', 'aAcc']
def calculate_file_sha256(file_path):
"""calculate file sha256 hash code."""
with open(file_path, 'rb') as fp:
sha256_cal = hashlib.sha256()
sha256_cal.update(fp.read())
return sha256_cal.hexdigest()
def process_checkpoint(in_file, out_file):
checkpoint = torch.load(in_file, map_location='cpu')
# remove optimizer for smaller file size
@ -22,10 +30,17 @@ def process_checkpoint(in_file, out_file):
# if it is necessary to remove some sensitive data in checkpoint['meta'],
# add the code here.
torch.save(checkpoint, out_file)
sha = subprocess.check_output(['sha256sum', out_file]).decode()
# The hash code calculation and rename command differ on different system
# platform.
sha = calculate_file_sha256(out_file)
final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
subprocess.Popen(['mv', out_file, final_file])
return final_file
os.rename(out_file, final_file)
# Remove prefix and suffix
final_file_name = osp.split(final_file)[1]
final_file_name = osp.splitext(final_file_name)[0]
return final_file_name
def get_final_iter(config):
@ -36,40 +51,43 @@ def get_final_iter(config):
def get_final_results(log_json_path, iter_num):
result_dict = dict()
last_iter = 0
with open(log_json_path, 'r') as f:
for line in f.readlines():
log_line = json.loads(line)
if 'mode' not in log_line.keys():
continue
if log_line['mode'] == 'train' and log_line['iter'] == iter_num:
result_dict['memory'] = log_line['memory']
if log_line['iter'] == iter_num:
# When evaluation, the 'iter' of new log json is the evaluation
# steps on single gpu.
flag1 = ('aAcc' in log_line) or (log_line['mode'] == 'val')
flag2 = (last_iter == iter_num - 50) or (last_iter == iter_num)
if flag1 and flag2:
result_dict.update({
key: log_line[key]
for key in RESULTS_LUT if key in log_line
})
return result_dict
last_iter = log_line['iter']
def parse_args():
parser = argparse.ArgumentParser(description='Gather benchmarked models')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
'-c', '--config-name', type=str, help='Process the selected config.')
parser.add_argument(
'config',
'-w',
'--work-dir',
default='work_dirs/',
type=str,
help='root path of benchmarked configs to be gathered')
help='Ckpt storage root folder of benchmarked models to be gathered.')
parser.add_argument(
'out_dir',
'-c',
'--collect-dir',
default='work_dirs/gather',
type=str,
help='output path of gathered models to be stored')
parser.add_argument('out_file', type=str, help='the output json file name')
parser.add_argument(
'--filter', type=str, nargs='+', default=[], help='config filter')
help='Ckpt collect root folder of gathered models.')
parser.add_argument(
'--all', action='store_true', help='whether include .py and .log')
@ -79,34 +97,30 @@ def parse_args():
def main():
args = parse_args()
models_root = args.root
models_out = args.out_dir
config_name = args.config
mmcv.mkdir_or_exist(models_out)
work_dir = args.work_dir
collect_dir = args.collect_dir
selected_config_name = args.config_name
mmcv.mkdir_or_exist(collect_dir)
# find all models in the root directory to be gathered
raw_configs = list(mmcv.scandir(config_name, '.py', recursive=True))
raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
# filter configs that is not trained in the experiments dir
used_configs = []
for raw_config in raw_configs:
work_dir = osp.splitext(osp.basename(raw_config))[0]
if osp.exists(osp.join(models_root, work_dir)):
used_configs.append((work_dir, raw_config))
config_name = osp.splitext(osp.basename(raw_config))[0]
if osp.exists(osp.join(work_dir, config_name)):
if (selected_config_name is None
or selected_config_name == config_name):
used_configs.append(raw_config)
print(f'Find {len(used_configs)} models to be gathered')
# find final_ckpt and log file for trained each config
# and parse the best performance
model_infos = []
for used_config, raw_config in used_configs:
bypass = True
for p in args.filter:
if p in used_config:
bypass = False
break
if bypass:
continue
exp_dir = osp.join(models_root, used_config)
for used_config in used_configs:
config_name = osp.splitext(osp.basename(used_config))[0]
exp_dir = osp.join(work_dir, config_name)
# check whether the exps is finished
final_iter = get_final_iter(used_config)
final_model = 'iter_{}.pth'.format(final_iter)
@ -134,8 +148,7 @@ def main():
model_time = osp.split(log_json_path)[-1].split('.')[0]
model_infos.append(
dict(
config=used_config,
raw_config=raw_config,
config_name=config_name,
results=model_performance,
iters=final_iter,
model_time=model_time,
@ -144,13 +157,12 @@ def main():
# publish model for each checkpoint
publish_model_infos = []
for model in model_infos:
model_publish_dir = osp.join(models_out,
model['raw_config'].rstrip('.py'))
model_name = osp.split(model['config'])[-1].split('.')[0]
config_name = model['config_name']
model_publish_dir = osp.join(collect_dir, config_name)
publish_model_path = osp.join(model_publish_dir,
model_name + '_' + model['model_time'])
trained_model_path = osp.join(models_root, model['config'],
config_name + '_' + model['model_time'])
trained_model_path = osp.join(work_dir, config_name,
'iter_{}.pth'.format(model['iters']))
if osp.exists(model_publish_dir):
for file in os.listdir(model_publish_dir):
@ -170,28 +182,29 @@ def main():
publish_model_path)
model['model_path'] = final_model_path
new_json_path = f'{model_name}-{model["log_json_path"]}'
new_json_path = f'{config_name}_{model["log_json_path"]}'
# copy log
shutil.copy(
osp.join(models_root, model['config'], model['log_json_path']),
osp.join(work_dir, config_name, model['log_json_path']),
osp.join(model_publish_dir, new_json_path))
if args.all:
new_txt_path = new_json_path.rstrip('.json')
shutil.copy(
osp.join(models_root, model['config'],
osp.join(work_dir, config_name,
model['log_json_path'].rstrip('.json')),
osp.join(model_publish_dir, new_txt_path))
if args.all:
# copy config to guarantee reproducibility
raw_config = osp.join(config_name, model['raw_config'])
raw_config = osp.join('./configs', f'{config_name}.py')
mmcv.Config.fromfile(raw_config).dump(
osp.join(model_publish_dir, osp.basename(raw_config)))
publish_model_infos.append(model)
models = dict(models=publish_model_infos)
mmcv.dump(models, osp.join(models_out, args.out_file))
mmcv.dump(models, osp.join(collect_dir, 'model_infos.json'), indent=4)
if __name__ == '__main__':

View File

@ -0,0 +1,114 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from mmcv import Config
def parse_args():
parser = argparse.ArgumentParser(
description='Convert benchmark test model list to script')
parser.add_argument('config', help='test config file path')
parser.add_argument('--port', type=int, default=28171, help='dist port')
parser.add_argument(
'--work-dir',
default='work_dirs/benchmark_evaluation',
help='the dir to save metric')
parser.add_argument(
'--out',
type=str,
default='.dev/benchmark_evaluation.sh',
help='path to save model benchmark script')
args = parser.parse_args()
return args
def process_model_info(model_info, work_dir):
config = model_info['config'].strip()
fname, _ = osp.splitext(osp.basename(config))
job_name = fname
checkpoint = model_info['checkpoint'].strip()
work_dir = osp.join(work_dir, fname)
if not isinstance(model_info['eval'], list):
evals = [model_info['eval']]
else:
evals = model_info['eval']
eval = ' '.join(evals)
return dict(
config=config,
job_name=job_name,
checkpoint=checkpoint,
work_dir=work_dir,
eval=eval)
def create_test_bash_info(commands, model_test_dict, port, script_name,
partition):
config = model_test_dict['config']
job_name = model_test_dict['job_name']
checkpoint = model_test_dict['checkpoint']
work_dir = model_test_dict['work_dir']
eval = model_test_dict['eval']
echo_info = f'\necho \'{config}\' &'
commands.append(echo_info)
commands.append('\n')
command_info = f'GPUS=4 GPUS_PER_NODE=4 ' \
f'CPUS_PER_TASK=2 {script_name} '
command_info += f'{partition} '
command_info += f'{job_name} '
command_info += f'{config} '
command_info += f'$CHECKPOINT_DIR/{checkpoint} '
command_info += f'--eval {eval} '
command_info += f'--work-dir {work_dir} '
command_info += f'--options dist_params.port={port} '
command_info += '&'
commands.append(command_info)
def main():
args = parse_args()
if args.out:
out_suffix = args.out.split('.')[-1]
assert args.out.endswith('.sh'), \
f'Expected out file path suffix is .sh, but get .{out_suffix}'
commands = []
partition_name = 'PARTITION=$1'
commands.append(partition_name)
commands.append('\n')
checkpoint_root = 'CHECKPOINT_DIR=$2'
commands.append(checkpoint_root)
commands.append('\n')
script_name = osp.join('tools', 'slurm_test.sh')
port = args.port
work_dir = args.work_dir
cfg = Config.fromfile(args.config)
for model_key in cfg:
model_infos = cfg[model_key]
if not isinstance(model_infos, list):
model_infos = [model_infos]
for model_info in model_infos:
print('processing: ', model_info['config'])
model_test_dict = process_model_info(model_info, work_dir)
create_test_bash_info(commands, model_test_dict, port, script_name,
'$PARTITION')
port += 1
command_str = ''.join(commands)
if args.out:
with open(args.out, 'w') as f:
f.write(command_str + '\n')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,91 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
# Default using 4 gpu when training
config_8gpu_list = [
'configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K.py', # noqa
'configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py',
'configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py',
]
def parse_args():
parser = argparse.ArgumentParser(
description='Convert benchmark model json to script')
parser.add_argument(
'txt_path', type=str, help='txt path output by benchmark_filter')
parser.add_argument('--port', type=int, default=24727, help='dist port')
parser.add_argument(
'--out',
type=str,
default='.dev/benchmark_train.sh',
help='path to save model benchmark script')
args = parser.parse_args()
return args
def create_train_bash_info(commands, config, script_name, partition, port):
cfg = config.strip()
# print cfg name
echo_info = f'echo \'{cfg}\' &'
commands.append(echo_info)
commands.append('\n')
_, model_name = osp.split(osp.dirname(cfg))
config_name, _ = osp.splitext(osp.basename(cfg))
# default setting
if cfg in config_8gpu_list:
command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \
f'CPUS_PER_TASK=2 {script_name} '
else:
command_info = f'GPUS=4 GPUS_PER_NODE=4 ' \
f'CPUS_PER_TASK=2 {script_name} '
command_info += f'{partition} '
command_info += f'{config_name} '
command_info += f'{cfg} '
command_info += f'--options ' \
f'checkpoint_config.max_keep_ckpts=1 ' \
f'dist_params.port={port} '
command_info += f'--work-dir work_dirs/{model_name}/{config_name} '
# Let the script shut up
command_info += '>/dev/null &'
commands.append(command_info)
commands.append('\n')
def main():
args = parse_args()
if args.out:
out_suffix = args.out.split('.')[-1]
assert args.out.endswith('.sh'), \
f'Expected out file path suffix is .sh, but get .{out_suffix}'
root_name = './tools'
script_name = osp.join(root_name, 'slurm_train.sh')
port = args.port
partition_name = 'PARTITION=$1'
commands = []
commands.append(partition_name)
commands.append('\n')
commands.append('\n')
with open(args.txt_path, 'r') as f:
model_cfgs = f.readlines()
for i, cfg in enumerate(model_cfgs):
create_train_bash_info(commands, cfg, script_name, '$PARTITION',
port)
port += 1
command_str = ''.join(commands)
if args.out:
with open(args.out, 'w') as f:
f.write(command_str)
if __name__ == '__main__':
main()

View File

@ -7,6 +7,7 @@ repos:
rev: v2.2.0
hooks:
- id: seed-isort-config
args: ["--exclude", ".dev"]
- repo: https://github.com/timothycrosley/isort
rev: 4.3.21
hooks:

View File

@ -19,4 +19,4 @@
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| --------- | --------- | --------- | ------: | -------- | -------------- | ----: | ------------- | --------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Fast-SCNN | Fast-SCNN | 512x1024 | 160000 | 3.3 | 56.45 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_8x4_160k_lr0.12_cityscapes-20210630_164853.log.json) |
| Fast-SCNN | Fast-SCNN | 512x1024 | 160000 | 3.3 | 56.45 | 70.96 | 72.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853.log.json) |

View File

@ -25,4 +25,4 @@ Models:
mIoU: 70.96
mIoU(ms+flip): 72.65
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_8x4_160k_lr0.12_cityscapes-0cec9937.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth

View File

@ -39,18 +39,18 @@
| FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | 69.66 | 72.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r18b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes_20201226_004430-32d504e5.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r18b-d8_769x769_80k_cityscapes/fcn_r18b-d8_769x769_80k_cityscapes-20201226_004430.log.json) |
| FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | 73.83 | 76.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r50b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes_20201225_094223-94552d38.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r50b-d8_769x769_80k_cityscapes/fcn_r50b-d8_769x769_80k_cityscapes-20201225_094223.log.json) |
| FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | 77.02 | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101b-d8_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes_20201226_170012-82be37e2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101b-d8_769x769_80k_cityscapes/fcn_r101b-d8_769x769_80k_cityscapes-20201226_170012.log.json) |
| FCN-D6 | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) |
| FCN-D6 | R-50-D16 | 512x1024 | 80000 | - | 10.35 | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) |
| FCN-D6 | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-1aab18ed.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) |
| FCN-D6 | R-50-D16 | 769x769 | 80000 | - | 4.15 | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-109d88eb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) |
| FCN-D6 | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-9cf2b450.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) |
| FCN-D6 | R-101-D16 | 512x1024 | 80000 | - | 8.26 | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-cb336445.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) |
| FCN-D6 | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-60b114e9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) |
| FCN-D6 | R-101-D16 | 769x769 | 80000 | - | 3.21 | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-e33adc4f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) |
| FCN-D6 | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-6a0b62e9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) |
| FCN-D6 | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-d665f231.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) |
| FCN-D6 | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-3f2eb5b4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) |
| FCN-D6 | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-c4d8bfbc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) |
| FCN-D6 | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | 77.06 | 78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-20210305_130133.log.json) |
| FCN-D6 | R-50-D16 | 512x1024 | 80000 | - | 10.35 | 77.27 | 78.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes-20210306_115604.log.json) |
| FCN-D6 | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | 76.82 | 78.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-20210305_185744.log.json) |
| FCN-D6 | R-50-D16 | 769x769 | 80000 | - | 4.15 | 77.04 | 78.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-20210305_200413.log.json) |
| FCN-D6 | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | 77.36 | 79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-20210305_130337.log.json) |
| FCN-D6 | R-101-D16 | 512x1024 | 80000 | - | 8.26 | 78.46 | 80.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-20210308_102747.log.json) |
| FCN-D6 | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | 77.28 | 78.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-20210308_102453.log.json) |
| FCN-D6 | R-101-D16 | 769x769 | 80000 | - | 3.21 | 78.06 | 79.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-20210306_120016.log.json) |
| FCN-D6 | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | 76.99 | 79.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-20210311_125550.log.json) |
| FCN-D6 | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | 76.86 | 78.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-20210311_131012.log.json) |
| FCN-D6 | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | 77.72 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-20210311_144305.log.json) |
| FCN-D6 | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | 77.34 | 78.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-20210311_154527.log.json) |
### ADE20K
@ -74,8 +74,8 @@
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757-b5e97937.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757.log.json) |
| FCN | R-101-D8 | 480x480 | 80000 | - | - | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310-4711813f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310.log.json) |
| FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | 44.43 | 45.63 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_40k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757.log.json) |
| FCN | R-101-D8 | 480x480 | 80000 | - | - | 44.13 | 45.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310.log.json) |
### Pascal Context 59

View File

@ -349,7 +349,7 @@ Models:
mIoU: 77.06
mIoU(ms+flip): 78.85
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_40k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes_20210305_130133-98d5d1bc.pth
- Config: configs/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -370,7 +370,7 @@ Models:
mIoU: 77.27
mIoU(ms+flip): 78.88
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_40k_cityscapes-98d5d1bc.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_512x1024_80k_cityscapes/fcn_d6_r50-d16_512x1024_80k_cityscapes_20210306_115604-133c292f.pth
- Config: configs/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes.py
In Collection: fcn
Metadata:
@ -392,7 +392,7 @@ Models:
mIoU: 76.82
mIoU(ms+flip): 78.22
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes-1aab18ed.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_40k_cityscapes/fcn_d6_r50-d16_769x769_40k_cityscapes_20210305_185744-1aab18ed.pth
- Config: configs/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -413,7 +413,7 @@ Models:
mIoU: 77.04
mIoU(ms+flip): 78.4
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes-109d88eb.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50-d16_769x769_80k_cityscapes/fcn_d6_r50-d16_769x769_80k_cityscapes_20210305_200413-109d88eb.pth
- Config: configs/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes.py
In Collection: fcn
Metadata:
@ -435,7 +435,7 @@ Models:
mIoU: 77.36
mIoU(ms+flip): 79.18
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes-9cf2b450.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_40k_cityscapes/fcn_d6_r101-d16_512x1024_40k_cityscapes_20210305_130337-9cf2b450.pth
- Config: configs/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -456,7 +456,7 @@ Models:
mIoU: 78.46
mIoU(ms+flip): 80.42
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes-cb336445.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_512x1024_80k_cityscapes/fcn_d6_r101-d16_512x1024_80k_cityscapes_20210308_102747-cb336445.pth
- Config: configs/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes.py
In Collection: fcn
Metadata:
@ -478,7 +478,7 @@ Models:
mIoU: 77.28
mIoU(ms+flip): 78.95
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes-60b114e9.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_40k_cityscapes/fcn_d6_r101-d16_769x769_40k_cityscapes_20210308_102453-60b114e9.pth
- Config: configs/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -499,7 +499,7 @@ Models:
mIoU: 78.06
mIoU(ms+flip): 79.58
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes-e33adc4f.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101-d16_769x769_80k_cityscapes/fcn_d6_r101-d16_769x769_80k_cityscapes_20210306_120016-e33adc4f.pth
- Config: configs/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -521,7 +521,7 @@ Models:
mIoU: 76.99
mIoU(ms+flip): 79.03
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_512x1024_80k_cityscapes/fcn_d6_r50b_d16_512x1024_80k_cityscapes-6a0b62e9.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_512x1024_80k_cityscapes/fcn_d6_r50b-d16_512x1024_80k_cityscapes_20210311_125550-6a0b62e9.pth
- Config: configs/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -543,7 +543,7 @@ Models:
mIoU: 76.86
mIoU(ms+flip): 78.52
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b_d16_769x769_80k_cityscapes/fcn_d6_r50b_d16_769x769_80k_cityscapes-d665f231.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r50b-d16_769x769_80k_cityscapes/fcn_d6_r50b-d16_769x769_80k_cityscapes_20210311_131012-d665f231.pth
- Config: configs/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -565,7 +565,7 @@ Models:
mIoU: 77.72
mIoU(ms+flip): 79.53
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_512x1024_80k_cityscapes/fcn_d6_r101b_d16_512x1024_80k_cityscapes-3f2eb5b4.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_512x1024_80k_cityscapes/fcn_d6_r101b-d16_512x1024_80k_cityscapes_20210311_144305-3f2eb5b4.pth
- Config: configs/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes.py
In Collection: fcn
Metadata:
@ -587,7 +587,7 @@ Models:
mIoU: 77.34
mIoU(ms+flip): 78.91
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b_d16_769x769_80k_cityscapes/fcn_d6_r101b_d16_769x769_80k_cityscapes-c4d8bfbc.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_d6_r101b-d16_769x769_80k_cityscapes/fcn_d6_r101b-d16_769x769_80k_cityscapes_20210311_154527-c4d8bfbc.pth
- Config: configs/fcn/fcn_r50-d8_512x512_80k_ade20k.py
In Collection: fcn
Metadata:
@ -752,7 +752,7 @@ Models:
mIoU: 44.43
mIoU(ms+flip): 45.63
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context-20210421_154757-b5e97937.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_40k_pascal_context/fcn_r101-d8_480x480_40k_pascal_context_20210421_154757-b5e97937.pth
- Config: configs/fcn/fcn_r101-d8_480x480_80k_pascal_context.py
In Collection: fcn
Metadata:
@ -766,7 +766,7 @@ Models:
mIoU: 44.13
mIoU(ms+flip): 45.26
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context-20210421_163310-4711813f.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fcn/fcn_r101-d8_480x480_80k_pascal_context/fcn_r101-d8_480x480_80k_pascal_context_20210421_163310-4711813f.pth
- Config: configs/fcn/fcn_r101-d8_480x480_40k_pascal_context_59.py
In Collection: fcn
Metadata:

View File

@ -19,7 +19,7 @@
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes-50245227.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921.log.json) |
| PSPNet | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes-ade37931.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919.log.json) |
| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes-bc86dc84.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |
| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |
| FCN | R-101-D8 | 512x1024 | 80000 | 5.37 | 8.64 | 76.80 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921.log.json) |
| PSPNet | R-101-D8 | 512x1024 | 80000 | 5.34 | 8.77 | 79.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919.log.json) |
| DeepLabV3 | R-101-D8 | 512x1024 | 80000 | 5.75 | 3.86 | 80.48 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |
| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | 6.35 | 7.87 | 80.46 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920.log.json) |

View File

@ -24,7 +24,7 @@ Models:
Metrics:
mIoU: 76.8
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes-50245227.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/fcn_r101-d8_512x1024_80k_fp16_cityscapes/fcn_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230921-50245227.pth
- Config: configs/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes.py
In Collection: fp16
Metadata:
@ -45,7 +45,7 @@ Models:
Metrics:
mIoU: 79.46
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes-ade37931.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/pspnet_r101-d8_512x1024_80k_fp16_cityscapes/pspnet_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230919-ade37931.pth
- Config: configs/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes.py
In Collection: fp16
Metadata:
@ -66,7 +66,7 @@ Models:
Metrics:
mIoU: 80.48
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes-bc86dc84.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-bc86dc84.pth
- Config: configs/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes.py
In Collection: fp16
Metadata:
@ -87,4 +87,4 @@ Models:
Metrics:
mIoU: 80.46
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes-cc58bc8d.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fp16/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_fp16_cityscapes_20200717_230920-cc58bc8d.pth

View File

@ -34,9 +34,9 @@
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 3.8 | 38.66 | 31.38 | 32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | 35.51 | 36.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20200614_185145-66f20cb7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20200614_185145.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 4.9 | 22.57 | 36.27 | 37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 80000 | 8.2 | 21.23 | 41.90 | 43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json) |
| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | 33.00 | 34.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20200614_214413.log.json) |
| FCN | HRNetV2p-W18-Small | 512x512 | 160000 | - | - | 33.07 | 34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 160000 | - | - | 36.79 | 38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 160000 | - | - | 42.02 | 43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json) |
@ -44,7 +44,7 @@
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | 65.20 | 68.55 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20200617_224503-56e36088.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20200617_224503.log.json) |
| FCN | HRNetV2p-W18-Small | 512x512 | 20000 | 1.8 | 43.36 | 65.5 | 68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 20000 | 2.9 | 23.48 | 72.30 | 74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 20000 | 6.2 | 22.05 | 75.87 | 78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_20k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json) |
| FCN | HRNetV2p-W18-Small | 512x512 | 40000 | - | - | 66.61 | 70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) |

View File

@ -198,10 +198,10 @@ Models:
Results:
Dataset: ADE20K
Metrics:
mIoU: 35.51
mIoU(ms+flip): 36.8
mIoU: 36.27
mIoU(ms+flip): 37.28
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20200614_185145-66f20cb7.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth
- Config: configs/hrnet/fcn_hr48_512x512_80k_ade20k.py
In Collection: hrnet
Metadata:
@ -234,10 +234,10 @@ Models:
Results:
Dataset: ADE20K
Metrics:
mIoU: 33.0
mIoU(ms+flip): 34.55
mIoU: 33.07
mIoU(ms+flip): 34.56
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20200614_214413-870f65ac.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth
- Config: configs/hrnet/fcn_hr18_512x512_160k_ade20k.py
In Collection: hrnet
Metadata:
@ -284,10 +284,10 @@ Models:
Results:
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 65.2
mIoU(ms+flip): 68.55
mIoU: 65.5
mIoU(ms+flip): 68.89
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20200617_224503-56e36088.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth
- Config: configs/hrnet/fcn_hr18_512x512_20k_voc12aug.py
In Collection: hrnet
Metadata:

View File

@ -36,7 +36,7 @@
| NonLocal | R-50-D8 | 512x512 | 80000 | 9.1 | 21.37 | 40.75 | 42.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801-5ae0aa33.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_80k_ade20k/nonlocal_r50-d8_512x512_80k_ade20k_20200615_015801.log.json) |
| NonLocal | R-101-D8 | 512x512 | 80000 | 12.6 | 13.97 | 42.90 | 44.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758-24105919.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_80k_ade20k/nonlocal_r101-d8_512x512_80k_ade20k_20200615_015758.log.json) |
| NonLocal | R-50-D8 | 512x512 | 160000 | - | - | 42.03 | 43.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410-baef45e3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r50-d8_512x512_160k_ade20k/nonlocal_r50-d8_512x512_160k_ade20k_20200616_005410.log.json) |
| NonLocal | R-101-D8 | 512x512 | 160000 | - | - | 43.36 | 44.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20200616_003422-affd0f8d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20200616_003422.log.json) |
| NonLocal | R-101-D8 | 512x512 | 160000 | - | - | 44.63 | 45.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502.log.json) |
### Pascal VOC 2012 + Aug

View File

@ -214,10 +214,10 @@ Models:
Results:
Dataset: ADE20K
Metrics:
mIoU: 43.36
mIoU(ms+flip): 44.83
mIoU: 44.63
mIoU(ms+flip): 45.79
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20200616_003422-affd0f8d.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/nonlocal_net/nonlocal_r101-d8_512x512_160k_ade20k/nonlocal_r101-d8_512x512_160k_ade20k_20210827_221502-7881aa1a.pth
- Config: configs/nonlocal_net/nonlocal_r50-d8_512x512_20k_voc12aug.py
In Collection: nonlocal_net
Metadata:

View File

@ -42,9 +42,9 @@
| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes-02ac0f13.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) |
| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes-db500f80.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) |
| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes-78688424.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) |
| OCRNet | R-101-D8 | 512x1024 | 8 | 40000 | - | - | 80.09 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json) |
| OCRNet | R-101-D8 | 512x1024 | 16 | 40000 | 8.8 | 3.02 | 80.30 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) |
| OCRNet | R-101-D8 | 512x1024 | 16 | 80000 | 8.8 | 3.02 | 80.81 | - | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) |
### ADE20K

View File

@ -170,7 +170,7 @@ Models:
Metrics:
mIoU: 80.09
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes-02ac0f13.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth
- Config: configs/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes.py
In Collection: ocrnet
Metadata:
@ -191,7 +191,7 @@ Models:
Metrics:
mIoU: 80.3
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes-db500f80.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth
- Config: configs/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes.py
In Collection: ocrnet
Metadata:
@ -212,7 +212,7 @@ Models:
Metrics:
mIoU: 80.81
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes-78688424.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth
- Config: configs/ocrnet/ocrnet_hr18s_512x512_80k_ade20k.py
In Collection: ocrnet
Metadata:

View File

@ -21,7 +21,7 @@
| Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
| ----------- | --------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | ------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) |
| FCN | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 78.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive-20201223_191051.log.json) |
| PSPNet | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | 78.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive-20201227_181818.log.json) |
| DeepLabV3 | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | 78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive-20201226_094047.log.json) |
@ -29,7 +29,7 @@
| Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
| ----------- | --------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) |
| FCN | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 81.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare-20201223_191051.log.json) |
| PSPNet | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | 81.22 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare-20201227_181818.log.json) |
| DeepLabV3 | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare-20201226_094047.log.json) |
@ -37,7 +37,7 @@
| Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
| ----------- | --------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) |
| FCN | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 80.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1-20201223_191051.log.json) |
| PSPNet | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | 80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1-20201227_181818.log.json) |
| DeepLabV3 | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1-20201226_094047.log.json) |
@ -45,6 +45,6 @@
| Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
| ----------- | --------- | ---------- | --------- | -----: | ------- | -------- | -------------: | ----: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) |
| FCN | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf-20201223_173724.log.json) |
| PSPNet | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | 80.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf-20201227_181818.log.json) |
| DeepLabV3 | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | 80.21 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf-20201226_094047.log.json) |

View File

@ -20,7 +20,7 @@ Models:
Metrics:
mIoU: 78.67
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_64x64_40k_drive/unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
- Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
In Collection: unet
Metadata:
@ -62,7 +62,7 @@ Models:
Metrics:
mIoU: 81.02
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_stare/unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
- Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
In Collection: unet
Metadata:
@ -104,7 +104,7 @@ Models:
Metrics:
mIoU: 80.24
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_128x128_40k_chase_db1/unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
- Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
In Collection: unet
Metadata:
@ -146,7 +146,7 @@ Models:
Metrics:
mIoU: 79.45
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/unet_s5-d16_256x256_40k_hrf/unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
- Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
In Collection: unet
Metadata:

View File

@ -37,14 +37,14 @@ This script convert model from `PRETRAIN_PATH` and store the converted model in
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_mln_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k-0403cee1.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) |
| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k-852fa768.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) |
| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) |
| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k-afc93ec2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) |
| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k-5110d916.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) |
| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k-fb9a5dfb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) |
| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) |
| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k-1e090789.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) |
| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k-828705d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) |
| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k-4e1450f3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) |
| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k-8a959c14.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) |
| UPerNet | ViT-B + MLN | 512x512 | 80000 | 9.20 | 6.94 | 47.71 | 49.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_mln_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/20210624_130547.log.json) |
| UPerNet | ViT-B + MLN | 512x512 | 160000 | 9.20 | 7.58 | 46.75 | 48.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/20210623_192432.log.json) |
| UPerNet | ViT-B + LN + MLN | 512x512 | 160000 | 9.21 | 6.82 | 47.73 | 49.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/20210621_172828.log.json) |
| UPerNet | DeiT-S | 512x512 | 80000 | 4.68 | 29.85 | 42.96 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/20210624_095228.log.json) |
| UPerNet | DeiT-S | 512x512 | 160000 | 4.68 | 29.19 | 42.87 | 43.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/20210621_160903.log.json) |
| UPerNet | DeiT-S + MLN | 512x512 | 160000 | 5.69 | 11.18 | 43.82 | 45.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/20210621_161021.log.json) |
| UPerNet | DeiT-S + LN + MLN | 512x512 | 160000 | 5.69 | 12.39 | 43.52 | 45.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/20210621_161021.log.json) |
| UPerNet | DeiT-B | 512x512 | 80000 | 7.75 | 9.69 | 45.24 | 46.73 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_512x512_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/20210624_130529.log.json) |
| UPerNet | DeiT-B | 512x512 | 160000 | 7.75 | 10.39 | 45.36 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/20210621_180100.log.json) |
| UPerNet | DeiT-B + MLN | 512x512 | 160000 | 9.21 | 7.78 | 45.46 | 47.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/20210621_191949.log.json) |
| UPerNet | DeiT-B + LN + MLN | 512x512 | 160000 | 9.21 | 7.75 | 45.37 | 47.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/20210623_153535.log.json) |

View File

@ -25,7 +25,7 @@ Models:
mIoU: 47.71
mIoU(ms+flip): 49.51
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k-0403cee1.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_80k_ade20k/upernet_vit-b16_mln_512x512_80k_ade20k_20210624_130547-0403cee1.pth
- Config: configs/vit/upernet_vit-b16_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -47,7 +47,7 @@ Models:
mIoU: 46.75
mIoU(ms+flip): 48.46
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k-852fa768.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_mln_512x512_160k_ade20k/upernet_vit-b16_mln_512x512_160k_ade20k_20210624_130547-852fa768.pth
- Config: configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -69,7 +69,7 @@ Models:
mIoU: 47.73
mIoU(ms+flip): 49.95
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k-f444c077.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k/upernet_vit-b16_ln_mln_512x512_160k_ade20k_20210621_172828-f444c077.pth
- Config: configs/vit/upernet_deit-s16_512x512_80k_ade20k.py
In Collection: vit
Metadata:
@ -91,7 +91,7 @@ Models:
mIoU: 42.96
mIoU(ms+flip): 43.79
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k-afc93ec2.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_80k_ade20k/upernet_deit-s16_512x512_80k_ade20k_20210624_095228-afc93ec2.pth
- Config: configs/vit/upernet_deit-s16_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -113,7 +113,7 @@ Models:
mIoU: 42.87
mIoU(ms+flip): 43.79
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k-5110d916.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_512x512_160k_ade20k/upernet_deit-s16_512x512_160k_ade20k_20210621_160903-5110d916.pth
- Config: configs/vit/upernet_deit-s16_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -135,7 +135,7 @@ Models:
mIoU: 43.82
mIoU(ms+flip): 45.07
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k-fb9a5dfb.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_mln_512x512_160k_ade20k/upernet_deit-s16_mln_512x512_160k_ade20k_20210621_161021-fb9a5dfb.pth
- Config: configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -157,7 +157,7 @@ Models:
mIoU: 43.52
mIoU(ms+flip): 45.01
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k-c0cd652f.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k/upernet_deit-s16_ln_mln_512x512_160k_ade20k_20210621_161021-c0cd652f.pth
- Config: configs/vit/upernet_deit-b16_512x512_80k_ade20k.py
In Collection: vit
Metadata:
@ -179,7 +179,7 @@ Models:
mIoU: 45.24
mIoU(ms+flip): 46.73
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k-1e090789.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_80k_ade20k/upernet_deit-b16_512x512_80k_ade20k_20210624_130529-1e090789.pth
- Config: configs/vit/upernet_deit-b16_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -201,7 +201,7 @@ Models:
mIoU: 45.36
mIoU(ms+flip): 47.16
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k-828705d7.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_512x512_160k_ade20k/upernet_deit-b16_512x512_160k_ade20k_20210621_180100-828705d7.pth
- Config: configs/vit/upernet_deit-b16_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -223,7 +223,7 @@ Models:
mIoU: 45.46
mIoU(ms+flip): 47.16
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k-4e1450f3.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_mln_512x512_160k_ade20k/upernet_deit-b16_mln_512x512_160k_ade20k_20210621_191949-4e1450f3.pth
- Config: configs/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k.py
In Collection: vit
Metadata:
@ -245,4 +245,4 @@ Models:
mIoU: 45.37
mIoU(ms+flip): 47.23
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k-8a959c14.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k/upernet_deit-b16_ln_mln_512x512_160k_ade20k_20210623_153535-8a959c14.pth

View File

@ -8,6 +8,6 @@ line_length = 79
multi_line_output = 0
known_standard_library = setuptools
known_first_party = mmseg
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,oss2,packaging,prettytable,pytest,scipy,seaborn,torch,ts
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,scipy,seaborn,torch,ts
no_lines_before = STDLIB,LOCALFOLDER
default_section = THIRDPARTY

View File

@ -1,7 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import shutil
import time
import warnings
import mmcv
@ -21,6 +23,10 @@ def parse_args():
description='mmseg test (and eval) a model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help=('if specified, the evaluation metric results will be dumped'
'into the directory as json'))
parser.add_argument(
'--aug-test', action='store_true', help='Use Flip and Multi scale aug')
parser.add_argument('--out', help='output result file in pickle format')
@ -108,6 +114,13 @@ def main():
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# allows not to create
if args.work_dir is not None and rank == 0:
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
json_file = osp.join(args.work_dir, f'eval_{timestamp}.json')
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
@ -202,10 +215,13 @@ def main():
print(f'\nwriting results to {args.out}')
mmcv.dump(results, args.out)
if args.eval:
dataset.evaluate(results, args.eval, **eval_kwargs)
if tmpdir is not None and eval_on_format_results:
# remove tmp dir when cityscapes evaluation
shutil.rmtree(tmpdir)
metric = dataset.evaluate(results, args.eval, **eval_kwargs)
metric_dict = dict(config=args.config, metric=metric)
if args.work_dir is not None and rank == 0:
mmcv.dump(metric_dict, json_file, indent=4)
if tmpdir is not None and eval_on_format_results:
# remove tmp dir when cityscapes evaluation
shutil.rmtree(tmpdir)
if __name__ == '__main__':