[Enhancement] Upgrade isort in pre-commit hook (#1270)

pull/1801/head
MengzhangLI 2022-02-08 19:06:33 +08:00 committed by GitHub
parent 0d978a8822
commit d4f5bb25fc
9 changed files with 15 additions and 14 deletions

View File

@ -3,13 +3,8 @@ repos:
rev: 3.8.3 rev: 3.8.3
hooks: hooks:
- id: flake8 - id: flake8
- repo: https://github.com/asottile/seed-isort-config - repo: https://github.com/PyCQA/isort
rev: v2.2.0 rev: 5.10.1
hooks:
- id: seed-isort-config
args: ["--exclude", ".dev"]
- repo: https://github.com/timothycrosley/isort
rev: 4.3.21
hooks: hooks:
- id: isort - id: isort
- repo: https://github.com/pre-commit/mirrors-yapf - repo: https://github.com/pre-commit/mirrors-yapf

View File

@ -64,8 +64,8 @@ def _concat_dataset(cfg, default_args=None):
def build_dataset(cfg, default_args=None): def build_dataset(cfg, default_args=None):
"""Build datasets.""" """Build datasets."""
from .dataset_wrappers import (ConcatDataset, RepeatDataset, from .dataset_wrappers import (ConcatDataset, MultiImageMixDataset,
MultiImageMixDataset) RepeatDataset)
if isinstance(cfg, (list, tuple)): if isinstance(cfg, (list, tuple)):
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
elif cfg['type'] == 'RepeatDataset': elif cfg['type'] == 'RepeatDataset':

View File

@ -6,7 +6,7 @@ split_before_expression_after_opening_paren = true
[isort] [isort]
line_length = 79 line_length = 79
multi_line_output = 0 multi_line_output = 0
known_standard_library = setuptools extra_standard_library = setuptools
known_first_party = mmseg known_first_party = mmseg
known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,requests,scipy,seaborn,torch,ts known_third_party = PIL,cityscapesscripts,cv2,detail,matplotlib,mmcv,numpy,onnxruntime,packaging,prettytable,pytest,pytorch_sphinx_theme,requests,scipy,seaborn,torch,ts
no_lines_before = STDLIB,LOCALFOLDER no_lines_before = STDLIB,LOCALFOLDER

View File

@ -66,9 +66,10 @@ def test_config_data_pipeline():
CommandLine: CommandLine:
xdoctest -m tests/test_config.py test_config_build_data_pipeline xdoctest -m tests/test_config.py test_config_build_data_pipeline
""" """
from mmcv import Config
from mmseg.datasets.pipelines import Compose
import numpy as np import numpy as np
from mmcv import Config
from mmseg.datasets.pipelines import Compose
config_dpath = _get_config_directory() config_dpath = _get_config_directory()
print('Found config_dpath = {!r}'.format(config_dpath)) print('Found config_dpath = {!r}'.format(config_dpath))

View File

@ -308,9 +308,10 @@ def test_mean_fscore():
def test_filename_inputs(): def test_filename_inputs():
import cv2
import tempfile import tempfile
import cv2
def save_arr(input_arrays: list, title: str, is_image: bool, dir: str): def save_arr(input_arrays: list, title: str, is_image: bool, dir: str):
filenames = [] filenames = []
SUFFIX = '.png' if is_image else '.npy' SUFFIX = '.png' if is_image else '.npy'

View File

@ -30,6 +30,7 @@ def test_ce_loss():
# test loss with class weights from file # test loss with class weights from file
import os import os
import tempfile import tempfile
import mmcv import mmcv
import numpy as np import numpy as np
tmp_file = tempfile.NamedTemporaryFile() tmp_file = tempfile.NamedTemporaryFile()

View File

@ -21,6 +21,7 @@ def test_dice_lose():
# test loss with class weights from file # test loss with class weights from file
import os import os
import tempfile import tempfile
import mmcv import mmcv
import numpy as np import numpy as np
tmp_file = tempfile.NamedTemporaryFile() tmp_file = tempfile.NamedTemporaryFile()

View File

@ -51,6 +51,7 @@ def test_lovasz_loss():
# test loss with class weights from file # test loss with class weights from file
import os import os
import tempfile import tempfile
import mmcv import mmcv
import numpy as np import numpy as np
tmp_file = tempfile.NamedTemporaryFile() tmp_file = tempfile.NamedTemporaryFile()

View File

@ -242,8 +242,9 @@ def pytorch2onnx(model,
None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0] None, {net_feed_input[0]: img_list[0].detach().numpy()})[0][0]
# show segmentation results # show segmentation results
if show: if show:
import cv2
import os.path as osp import os.path as osp
import cv2
img = img_meta_list[0][0]['filename'] img = img_meta_list[0][0]['filename']
if not osp.exists(img): if not osp.exists(img):
img = imgs[0][:3, ...].permute(1, 2, 0) * 255 img = imgs[0][:3, ...].permute(1, 2, 0) * 255