mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
add docstrings to component modules of fast-scnn
This commit is contained in:
parent
e35f9acde1
commit
d8cba3d6a9
@ -10,7 +10,24 @@ from ..builder import BACKBONES
|
||||
|
||||
|
||||
class LearningToDownsample(nn.Module):
|
||||
"""Learning to downsample module."""
|
||||
"""Learning to downsample module.
|
||||
Args:
|
||||
in_channels (int): Number of input channels.
|
||||
|
||||
dw_channels1 (int): Number of output channels of the first
|
||||
depthwise conv (dwconv) layer.
|
||||
|
||||
dw_channels2 (int): Number of output channels of the second
|
||||
dwconv layer.
|
||||
|
||||
out_channels (int): Number of output channels of the whole
|
||||
'learning to downsample' module.
|
||||
|
||||
|
||||
conv_cfg (dict|None): Config of conv layers.
|
||||
norm_cfg (dict|None): Config of norm layers.
|
||||
act_cfg (dict): Config of activation layers.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
@ -53,7 +70,29 @@ class LearningToDownsample(nn.Module):
|
||||
|
||||
|
||||
class GlobalFeatureExtractor(nn.Module):
|
||||
"""Global feature extractor module."""
|
||||
"""Global feature extractor module.
|
||||
Args:
|
||||
in_channels (int): Number of input channels of the GFE module.
|
||||
|
||||
block_channels (tuple): Tuple of ints. Each int specifies the
|
||||
number of output channels of each Inverted Residual module.
|
||||
|
||||
out_channels(int): Number of output channels of the GFE module.
|
||||
|
||||
t (int): t parameter (upsampling factor) of each Inverted Residual
|
||||
module.
|
||||
|
||||
num_blocks (tuple): Tuple of ints. Each int specifies the number of
|
||||
times each Inverted Residual module is repeated.
|
||||
|
||||
pool_scales (tuple): Tuple of ints. Each int specifies the parameter
|
||||
required in 'global average pooling' within PPM.
|
||||
|
||||
conv_cfg (dict|None): Config of conv layers.
|
||||
norm_cfg (dict|None): Config of norm layers.
|
||||
act_cfg (dict): Config of activation layers.
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=64,
|
||||
@ -115,7 +154,25 @@ class GlobalFeatureExtractor(nn.Module):
|
||||
|
||||
|
||||
class FeatureFusionModule(nn.Module):
|
||||
"""Feature fusion module."""
|
||||
"""Feature fusion module.
|
||||
Args:
|
||||
higher_in_channels (int): Number of input channels of the
|
||||
higher-resolution branch.
|
||||
|
||||
lower_in_channels (int): Number of input channels of the
|
||||
lower-resolution branch.
|
||||
|
||||
out_channels (int): Number of output channels.
|
||||
|
||||
scale_factor (int): Scale factor applied to the lower-res input.
|
||||
Should be coherent with the downsampling factor determined
|
||||
by the GFE module.
|
||||
|
||||
conv_cfg (dict|None): Config of conv layers.
|
||||
norm_cfg (dict|None): Config of norm layers.
|
||||
act_cfg (dict): Config of activation layers.
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
higher_in_channels,
|
||||
@ -190,39 +247,39 @@ class FastSCNN(nn.Module):
|
||||
align_corners=False):
|
||||
"""Fast-SCNN Backbone.
|
||||
Args:
|
||||
in_channels(int): Number of input image channels. Default=3 (RGB)
|
||||
in_channels (int): Number of input image channels. Default=3 (RGB)
|
||||
|
||||
downsample_dw_channels1(int): Number of output channels after
|
||||
downsample_dw_channels1 (int): Number of output channels after
|
||||
the first conv layer in Learning-To-Downsample (LTD) module.
|
||||
|
||||
downsample_dw_channels2(int): Number of output channels
|
||||
downsample_dw_channels2 (int): Number of output channels
|
||||
after the second conv layer in LTD.
|
||||
|
||||
global_in_channels(int): Number of input channels of
|
||||
global_in_channels (int): Number of input channels of
|
||||
Global Feature Extractor(GFE).
|
||||
Equal to number of output channels of LTD.
|
||||
|
||||
global_block_channels(tuple): Tuple of integers that describe
|
||||
global_block_channels (tuple): Tuple of integers that describe
|
||||
the output channels for each of the MobileNet-v2 bottleneck
|
||||
residual blocks in GFE.
|
||||
|
||||
global_out_channels(int): Number of output channels of GFE.
|
||||
global_out_channels (int): Number of output channels of GFE.
|
||||
|
||||
higher_in_channels(int): Number of input channels of the higher
|
||||
higher_in_channels (int): Number of input channels of the higher
|
||||
resolution branch in FFM.
|
||||
Equal to global_in_channels.
|
||||
|
||||
lower_in_channels(int): Number of input channels of the lower
|
||||
lower_in_channels (int): Number of input channels of the lower
|
||||
resolution branch in FFM.
|
||||
Equal to global_out_channels.
|
||||
|
||||
fusion_out_channels(int): Number of output channels of FFM.
|
||||
fusion_out_channels (int): Number of output channels of FFM.
|
||||
|
||||
scale_factor(int): The upsampling factor of the higher resolution
|
||||
scale_factor (int): The upsampling factor of the higher resolution
|
||||
branch in FFM.
|
||||
Equal to the downsampling factor in GFE.
|
||||
|
||||
out_indices(tuple): Tuple of indices of list
|
||||
out_indices (tuple): Tuple of indices of list
|
||||
[higher_res_features, lower_res_features, fusion_output].
|
||||
Often set to (0,1,2) to enable aux. heads.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user