delete sub-optimal config files of fast-scnn

pull/58/head
johnzja 2020-08-09 22:37:04 +08:00
parent 4102ed38cf
commit daf93c6355
8 changed files with 0 additions and 507 deletions

View File

@ -1,62 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=3,
workers_per_gpu=3,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
total_epochs = 247000
evaluation = dict(interval=1000, metric='mIoU')
checkpoint_config = dict(interval=1000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=3,
workers_per_gpu=3,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 450000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=1.2,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 100000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 100000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.12, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 100000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,61 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 100000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 100000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])

View File

@ -1,64 +0,0 @@
_base_ = [
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py'
]
crop_size = (512, 1024)
cudnn_benchmark = True
# model training and testing settings
train_cfg = dict()
test_cfg = dict(mode='whole')
# Here: What is parameter 'with_seg'?
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(type='LoadAnnotations'), # with_seg=True
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='RandomCrop', crop_size=crop_size),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(2048, 1024),
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='poly',
power=0.9,
by_epoch=False,
)
# runtime settings
# total_epochs = 1000
total_iters = 80000
evaluation = dict(interval=2000, metric='mIoU')
checkpoint_config = dict(interval=2000)
# log config: log by iter.
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])