diff --git a/configs/fastscnn/fast_scnn_4x3_1000e_cityscapes.py b/configs/fastscnn/fast_scnn_4x3_1000e_cityscapes.py deleted file mode 100644 index 7583cb6f2..000000000 --- a/configs/fastscnn/fast_scnn_4x3_1000e_cityscapes.py +++ /dev/null @@ -1,62 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=3, - workers_per_gpu=3, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -total_epochs = 247000 -evaluation = dict(interval=1000, metric='mIoU') -checkpoint_config = dict(interval=1000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) diff --git a/configs/fastscnn/fast_scnn_4x3_450k_lr0.08_cityscapes.py b/configs/fastscnn/fast_scnn_4x3_450k_lr0.08_cityscapes.py deleted file mode 100644 index f562f0d76..000000000 --- a/configs/fastscnn/fast_scnn_4x3_450k_lr0.08_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=3, - workers_per_gpu=3, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 450000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) - diff --git a/configs/fastscnn/fast_scnn_4x8_100k_lr0.045_power1.2_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_100k_lr0.045_power1.2_cityscapes.py deleted file mode 100644 index 078fa94c5..000000000 --- a/configs/fastscnn/fast_scnn_4x8_100k_lr0.045_power1.2_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=1.2, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 100000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) - diff --git a/configs/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py deleted file mode 100644 index 10f56e093..000000000 --- a/configs/fastscnn/fast_scnn_4x8_100k_lr0.08_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 100000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) - diff --git a/configs/fastscnn/fast_scnn_4x8_100k_lr0.12_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_100k_lr0.12_cityscapes.py deleted file mode 100644 index 9ff49a9db..000000000 --- a/configs/fastscnn/fast_scnn_4x8_100k_lr0.12_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.12, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 100000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) - diff --git a/configs/fastscnn/fast_scnn_4x8_80k_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_80k_cityscapes.py deleted file mode 100644 index dd6ac7f15..000000000 --- a/configs/fastscnn/fast_scnn_4x8_80k_cityscapes.py +++ /dev/null @@ -1,61 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 100000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - diff --git a/configs/fastscnn/fast_scnn_4x8_80k_lr0.045_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_80k_lr0.045_cityscapes.py deleted file mode 100644 index f6fd1729e..000000000 --- a/configs/fastscnn/fast_scnn_4x8_80k_lr0.045_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 100000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) - diff --git a/configs/fastscnn/fast_scnn_4x8_80k_lr0.08_cityscapes.py b/configs/fastscnn/fast_scnn_4x8_80k_lr0.08_cityscapes.py deleted file mode 100644 index aec2ea0a2..000000000 --- a/configs/fastscnn/fast_scnn_4x8_80k_lr0.08_cityscapes.py +++ /dev/null @@ -1,64 +0,0 @@ -_base_ = [ - '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', - '../_base_/default_runtime.py' -] -crop_size = (512, 1024) -cudnn_benchmark = True -# model training and testing settings -train_cfg = dict() -test_cfg = dict(mode='whole') - -# Here: What is parameter 'with_seg'? -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -train_pipeline = [ - dict(type='LoadImageFromFile', to_float32=True), - dict(type='LoadAnnotations'), # with_seg=True - dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), - dict(type='RandomFlip', flip_ratio=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='RandomCrop', crop_size=crop_size), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']), -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=(2048, 1024), - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']), - ]) -] -data = dict( - samples_per_gpu=8, - workers_per_gpu=4, - train=dict(pipeline=train_pipeline), - val=dict(pipeline=test_pipeline), - test=dict(pipeline=test_pipeline)) - -# optimizer -optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=4e-5) -optimizer_config = dict() -# learning policy -lr_config = dict( - policy='poly', - power=0.9, - by_epoch=False, -) -# runtime settings -# total_epochs = 1000 -total_iters = 80000 -evaluation = dict(interval=2000, metric='mIoU') -checkpoint_config = dict(interval=2000) - -# log config: log by iter. -log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)]) -