encoder_decoder modified to avoid bugs when running PSPNet.
getting_started.md bug fixed.pull/58/head
parent
adb1f0d6b7
commit
dd0aadfb04
mmseg/models/segmentors
|
@ -338,7 +338,7 @@ The final output filename will be `psp_r50_512x1024_40ki_cityscapes-{hash id}.pt
|
|||
We provide a script to convert model to [ONNX](https://github.com/onnx/onnx) format. The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron). Besides, we also support comparing the output results between Pytorch and ONNX model.
|
||||
|
||||
```shell
|
||||
python tools/pytorch2onnx.py ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE} --output_file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
|
||||
python tools/pytorch2onnx.py ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE} --output-file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
|
||||
```
|
||||
|
||||
**Note**: This tool is still experimental. Some customized operators are not supported for now.
|
||||
|
|
|
@ -196,7 +196,7 @@ class EncoderDecoder(BaseSegmentor):
|
|||
count_mat[:, :, y1:y2, x1:x2] += 1
|
||||
assert (count_mat == 0).sum() == 0
|
||||
# We want to regard count_mat as a constant while exporting to ONNX
|
||||
count_mat = torch.from_numpy(count_mat.detach().numpy())
|
||||
count_mat = torch.from_numpy(count_mat.cpu().detach().numpy())
|
||||
preds = preds / count_mat
|
||||
if rescale:
|
||||
preds = resize(
|
||||
|
|
Loading…
Reference in New Issue