diff --git a/configs/knet/README.md b/configs/knet/README.md index a51c5cbcf..0a881406f 100644 --- a/configs/knet/README.md +++ b/configs/knet/README.md @@ -43,7 +43,7 @@ Semantic, instance, and panoptic segmentations have been addressed using differe | KNet + UPerNet | R-50-D8 | 512x512 | 80000 | 7.34 | 17.11 | 43.45 | 44.07 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json) | | KNet + UPerNet | Swin-T | 512x512 | 80000 | 7.57 | 15.56 | 45.84 | 46.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json) | | KNet + UPerNet | Swin-L | 512x512 | 80000 | 13.5 | 8.29 | 52.05 | 53.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json) | -| KNet + UPerNet | Swin-L | 640x640 | 80000 | 13.54 | 8.29 | 52.21 | 53.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json) | +| KNet + UPerNet | Swin-L | 640x640 | 80000 | 18.31 | 5.55 | 52.46 | 53.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220720_165636-cbcaed32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220720_165636.log.json) | Note: diff --git a/configs/knet/knet.yml b/configs/knet/knet.yml index 5e2e52955..1dec27be2 100644 --- a/configs/knet/knet.yml +++ b/configs/knet/knet.yml @@ -152,18 +152,18 @@ Models: crop size: (640,640) lr schd: 80000 inference time (ms/im): - - value: 120.63 + - value: 180.18 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (640,640) - Training Memory (GB): 13.54 + Training Memory (GB): 18.31 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: - mIoU: 52.21 - mIoU(ms+flip): 53.34 + mIoU: 52.46 + mIoU(ms+flip): 53.78 Config: configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py - Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth + Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220720_165636-cbcaed32.pth diff --git a/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py b/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py index fc6e9fe39..eceeb4ab3 100644 --- a/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py +++ b/configs/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k.py @@ -46,9 +46,10 @@ test_pipeline = [ dict(type='Collect', keys=['img']), ]) ] +# In K-Net implementation we use batch size 2 per GPU as default data = dict( + samples_per_gpu=2, + workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) -# In K-Net implementation we use batch size 2 per GPU as default -data = dict(samples_per_gpu=2, workers_per_gpu=2)