mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Refactor] Refactor decode_head and segmentors and add preprocess_cfg
This commit is contained in:
parent
19f39539de
commit
dd9c411335
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'ADE20KDataset'
|
dataset_type = 'ADE20KDataset'
|
||||||
data_root = 'data/ade/ADEChallengeData2016'
|
data_root = 'data/ade/ADEChallengeData2016'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'ADE20KDataset'
|
dataset_type = 'ADE20KDataset'
|
||||||
data_root = 'data/ade/ADEChallengeData2016'
|
data_root = 'data/ade/ADEChallengeData2016'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (640, 640)
|
crop_size = (640, 640)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'ChaseDB1Dataset'
|
dataset_type = 'ChaseDB1Dataset'
|
||||||
data_root = 'data/CHASE_DB1'
|
data_root = 'data/CHASE_DB1'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
img_scale = (960, 999)
|
img_scale = (960, 999)
|
||||||
crop_size = (128, 128)
|
crop_size = (128, 128)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
@ -12,7 +10,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'CityscapesDataset'
|
dataset_type = 'CityscapesDataset'
|
||||||
data_root = 'data/cityscapes/'
|
data_root = 'data/cityscapes/'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 1024)
|
crop_size = (512, 1024)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,6 +1,4 @@
|
|||||||
_base_ = './cityscapes.py'
|
_base_ = './cityscapes.py'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (1024, 1024)
|
crop_size = (1024, 1024)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -9,7 +7,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,6 +1,4 @@
|
|||||||
_base_ = './cityscapes.py'
|
_base_ = './cityscapes.py'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (768, 768)
|
crop_size = (768, 768)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -9,7 +7,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,6 +1,4 @@
|
|||||||
_base_ = './cityscapes.py'
|
_base_ = './cityscapes.py'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (769, 769)
|
crop_size = (769, 769)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -9,7 +7,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,6 +1,4 @@
|
|||||||
_base_ = './cityscapes.py'
|
_base_ = './cityscapes.py'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (832, 832)
|
crop_size = (832, 832)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -9,7 +7,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'COCOStuffDataset'
|
dataset_type = 'COCOStuffDataset'
|
||||||
data_root = 'data/coco_stuff10k'
|
data_root = 'data/coco_stuff10k'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'COCOStuffDataset'
|
dataset_type = 'COCOStuffDataset'
|
||||||
data_root = 'data/coco_stuff164k'
|
data_root = 'data/coco_stuff164k'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'DRIVEDataset'
|
dataset_type = 'DRIVEDataset'
|
||||||
data_root = 'data/DRIVE'
|
data_root = 'data/DRIVE'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
img_scale = (584, 565)
|
img_scale = (584, 565)
|
||||||
crop_size = (64, 64)
|
crop_size = (64, 64)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
@ -12,7 +10,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'HRFDataset'
|
dataset_type = 'HRFDataset'
|
||||||
data_root = 'data/HRF'
|
data_root = 'data/HRF'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
img_scale = (2336, 3504)
|
img_scale = (2336, 3504)
|
||||||
crop_size = (256, 256)
|
crop_size = (256, 256)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
@ -12,7 +10,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,9 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'iSAIDDataset'
|
dataset_type = 'iSAIDDataset'
|
||||||
data_root = 'data/iSAID'
|
data_root = 'data/iSAID'
|
||||||
|
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
"""
|
"""
|
||||||
This crop_size setting is followed by the implementation of
|
This crop_size setting is followed by the implementation of
|
||||||
`PointFlow: Flowing Semantics Through Points for Aerial Image
|
`PointFlow: Flowing Semantics Through Points for Aerial Image
|
||||||
@ -19,7 +16,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'LoveDADataset'
|
dataset_type = 'LoveDADataset'
|
||||||
data_root = 'data/loveDA'
|
data_root = 'data/loveDA'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'PascalContextDataset'
|
dataset_type = 'PascalContextDataset'
|
||||||
data_root = 'data/VOCdevkit/VOC2010/'
|
data_root = 'data/VOCdevkit/VOC2010/'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
|
|
||||||
img_scale = (520, 520)
|
img_scale = (520, 520)
|
||||||
crop_size = (480, 480)
|
crop_size = (480, 480)
|
||||||
@ -14,7 +12,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'PascalContextDataset59'
|
dataset_type = 'PascalContextDataset59'
|
||||||
data_root = 'data/VOCdevkit/VOC2010/'
|
data_root = 'data/VOCdevkit/VOC2010/'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
|
|
||||||
img_scale = (520, 520)
|
img_scale = (520, 520)
|
||||||
crop_size = (480, 480)
|
crop_size = (480, 480)
|
||||||
@ -14,7 +12,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'PascalVOCDataset'
|
dataset_type = 'PascalVOCDataset'
|
||||||
data_root = 'data/VOCdevkit/VOC2012'
|
data_root = 'data/VOCdevkit/VOC2012'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'PotsdamDataset'
|
dataset_type = 'PotsdamDataset'
|
||||||
data_root = 'data/potsdam'
|
data_root = 'data/potsdam'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'STAREDataset'
|
dataset_type = 'STAREDataset'
|
||||||
data_root = 'data/STARE'
|
data_root = 'data/STARE'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
img_scale = (605, 700)
|
img_scale = (605, 700)
|
||||||
crop_size = (128, 128)
|
crop_size = (128, 128)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
@ -12,7 +10,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,8 +1,6 @@
|
|||||||
# dataset settings
|
# dataset settings
|
||||||
dataset_type = 'ISPRSDataset'
|
dataset_type = 'ISPRSDataset'
|
||||||
data_root = 'data/vaihingen'
|
data_root = 'data/vaihingen'
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
crop_size = (512, 512)
|
crop_size = (512, 512)
|
||||||
train_pipeline = [
|
train_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
@ -11,7 +9,6 @@ train_pipeline = [
|
|||||||
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
||||||
dict(type='RandomFlip', prob=0.5),
|
dict(type='RandomFlip', prob=0.5),
|
||||||
dict(type='PhotoMetricDistortion'),
|
dict(type='PhotoMetricDistortion'),
|
||||||
dict(type='Pad', size=crop_size),
|
|
||||||
dict(type='PackSegInputs')
|
dict(type='PackSegInputs')
|
||||||
]
|
]
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='BiSeNetV1',
|
type='BiSeNetV1',
|
||||||
in_channels=3,
|
in_channels=3,
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='BiSeNetV2',
|
type='BiSeNetV2',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
|
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[72.39239876, 82.90891754, 73.15835921],
|
||||||
|
std=[1, 1, 1],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='CGNet',
|
type='CGNet',
|
||||||
norm_cfg=norm_cfg,
|
norm_cfg=norm_cfg,
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='UNet',
|
type='UNet',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,6 +1,13 @@
|
|||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa
|
pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ERFNet',
|
type='ERFNet',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='FastSCNN',
|
type='FastSCNN',
|
||||||
downsample_dw_channels=(32, 48),
|
downsample_dw_channels=(32, 48),
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://msra/hrnetv2_w18',
|
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='HRNet',
|
type='HRNet',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='UNet',
|
type='UNet',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ICNet',
|
type='ICNet',
|
||||||
backbone_cfg=dict(
|
backbone_cfg=dict(
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True)
|
norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='MobileNetV3',
|
type='MobileNetV3',
|
||||||
arch='large',
|
arch='large',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='CascadeEncoderDecoder',
|
type='CascadeEncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
num_stages=2,
|
num_stages=2,
|
||||||
pretrained='open-mmlab://msra/hrnetv2_w18',
|
pretrained='open-mmlab://msra/hrnetv2_w18',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='CascadeEncoderDecoder',
|
type='CascadeEncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
num_stages=2,
|
num_stages=2,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='CascadeEncoderDecoder',
|
type='CascadeEncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
num_stages=2,
|
num_stages=2,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='UNet',
|
type='UNet',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='MixVisionTransformer',
|
type='MixVisionTransformer',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_base_p16_384_20220308-96dfe169.pth' # noqa
|
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_base_p16_384_20220308-96dfe169.pth' # noqa
|
||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[127.5, 127.5, 127.5],
|
||||||
|
std=[127.5, 127.5, 127.5],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=checkpoint,
|
pretrained=checkpoint,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -1,6 +1,13 @@
|
|||||||
norm_cfg = dict(type='BN', requires_grad=True)
|
norm_cfg = dict(type='BN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='STDCContextPathNet',
|
type='STDCContextPathNet',
|
||||||
|
@ -3,8 +3,15 @@ checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/
|
|||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN')
|
backbone_norm_cfg = dict(type='LN')
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='PCPVT',
|
type='PCPVT',
|
||||||
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
|
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
|
||||||
|
@ -3,8 +3,15 @@ checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/
|
|||||||
# model settings
|
# model settings
|
||||||
backbone_norm_cfg = dict(type='LN')
|
backbone_norm_cfg = dict(type='LN')
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='PCPVT',
|
type='PCPVT',
|
||||||
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
|
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
|
||||||
|
@ -1,6 +1,13 @@
|
|||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='BEiT',
|
type='BEiT',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
|
custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
|
||||||
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa
|
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='mmcls.ConvNeXt',
|
type='mmcls.ConvNeXt',
|
||||||
|
@ -1,6 +1,13 @@
|
|||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='MAE',
|
type='MAE',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='open-mmlab://resnet50_v1c',
|
pretrained='open-mmlab://resnet50_v1c',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='ResNetV1c',
|
type='ResNetV1c',
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
backbone_norm_cfg = dict(type='LN', requires_grad=True)
|
backbone_norm_cfg = dict(type='LN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained=None,
|
pretrained=None,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='SwinTransformer',
|
type='SwinTransformer',
|
||||||
|
@ -1,7 +1,14 @@
|
|||||||
# model settings
|
# model settings
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
preprocess_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True,
|
||||||
|
pad_val=0,
|
||||||
|
seg_pad_val=255)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth',
|
pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='VisionTransformer',
|
type='VisionTransformer',
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=150),
|
||||||
|
auxiliary_head=dict(num_classes=150))
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=21),
|
||||||
|
auxiliary_head=dict(num_classes=21))
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=21),
|
||||||
|
auxiliary_head=dict(num_classes=21))
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
|
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=150),
|
||||||
|
auxiliary_head=dict(num_classes=150))
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_40k.py'
|
'../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (769, 769)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(align_corners=True),
|
decode_head=dict(align_corners=True),
|
||||||
auxiliary_head=dict(align_corners=True),
|
auxiliary_head=dict(align_corners=True),
|
||||||
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_80k.py'
|
'../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (769, 769)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(align_corners=True),
|
decode_head=dict(align_corners=True),
|
||||||
auxiliary_head=dict(align_corners=True),
|
auxiliary_head=dict(align_corners=True),
|
||||||
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=150),
|
||||||
|
auxiliary_head=dict(num_classes=150))
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=150),
|
||||||
|
auxiliary_head=dict(num_classes=150))
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_40k.py'
|
'../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (769, 769)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(align_corners=True),
|
decode_head=dict(align_corners=True),
|
||||||
auxiliary_head=dict(align_corners=True),
|
auxiliary_head=dict(align_corners=True),
|
||||||
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_80k.py'
|
'../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (769, 769)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(align_corners=True),
|
decode_head=dict(align_corners=True),
|
||||||
auxiliary_head=dict(align_corners=True),
|
auxiliary_head=dict(align_corners=True),
|
||||||
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))
|
||||||
|
@ -1,8 +1,5 @@
|
|||||||
_base_ = './upernet_beit-base_8x2_640x640_160k_ade20k.py'
|
_base_ = './upernet_beit-base_8x2_640x640_160k_ade20k.py'
|
||||||
|
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
|
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
# TODO: Refactor 'MultiScaleFlipAug' which supports
|
# TODO: Refactor 'MultiScaleFlipAug' which supports
|
||||||
|
@ -2,8 +2,10 @@ _base_ = [
|
|||||||
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (640, 640)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
|
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
|
||||||
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))
|
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))
|
||||||
|
|
||||||
|
@ -1,8 +1,5 @@
|
|||||||
_base_ = './upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py'
|
_base_ = './upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py'
|
||||||
|
|
||||||
img_norm_cfg = dict(
|
|
||||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
|
||||||
|
|
||||||
test_pipeline = [
|
test_pipeline = [
|
||||||
dict(type='LoadImageFromFile'),
|
dict(type='LoadImageFromFile'),
|
||||||
# TODO: Refactor 'MultiScaleFlipAug' which supports
|
# TODO: Refactor 'MultiScaleFlipAug' which supports
|
||||||
|
@ -2,8 +2,10 @@ _base_ = [
|
|||||||
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_320k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_320k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (640, 640)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
pretrained='pretrain/beit_large_patch16_224_pt22k_ft22k.pth',
|
pretrained='pretrain/beit_large_patch16_224_pt22k_ft22k.pth',
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='BEiT',
|
type='BEiT',
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_160k.py'
|
'../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
context_channels=(512, 1024, 2048),
|
context_channels=(512, 1024, 2048),
|
||||||
spatial_channels=(256, 256, 256, 512),
|
spatial_channels=(256, 256, 256, 512),
|
||||||
|
@ -3,6 +3,9 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
param_scheduler = [
|
param_scheduler = [
|
||||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||||
dict(
|
dict(
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
backbone_cfg=dict(
|
backbone_cfg=dict(
|
||||||
init_cfg=dict(
|
init_cfg=dict(
|
||||||
|
@ -1,6 +1,10 @@
|
|||||||
_base_ = './bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'
|
_base_ = './bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
backbone_cfg=dict(
|
backbone_cfg=dict(
|
||||||
init_cfg=dict(
|
init_cfg=dict(
|
||||||
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))), )
|
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))),
|
||||||
|
)
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_160k.py'
|
'../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(num_classes=171),
|
decode_head=dict(num_classes=171),
|
||||||
auxiliary_head=[
|
auxiliary_head=[
|
||||||
dict(num_classes=171),
|
dict(num_classes=171),
|
||||||
|
@ -4,8 +4,11 @@ _base_ = [
|
|||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
type='EncoderDecoder',
|
type='EncoderDecoder',
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
type='BiSeNetV1',
|
type='BiSeNetV1',
|
||||||
context_channels=(512, 1024, 2048),
|
context_channels=(512, 1024, 2048),
|
||||||
|
@ -3,7 +3,10 @@ _base_ = [
|
|||||||
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_160k.py'
|
'../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
backbone=dict(
|
backbone=dict(
|
||||||
context_channels=(512, 1024, 2048),
|
context_channels=(512, 1024, 2048),
|
||||||
spatial_channels=(256, 256, 256, 512),
|
spatial_channels=(256, 256, 256, 512),
|
||||||
|
@ -3,6 +3,9 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
param_scheduler = [
|
param_scheduler = [
|
||||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||||
dict(
|
dict(
|
||||||
|
@ -3,6 +3,9 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
param_scheduler = [
|
param_scheduler = [
|
||||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||||
dict(
|
dict(
|
||||||
|
@ -3,8 +3,11 @@ _base_ = [
|
|||||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (1024, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
models = dict(
|
models = dict(
|
||||||
|
preprocess_cfg=preprocess_cfg,
|
||||||
decode_head=dict(
|
decode_head=dict(
|
||||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
||||||
auxiliary_head=[
|
auxiliary_head=[
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,3 +2,6 @@ _base_ = [
|
|||||||
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 1024)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
|
model = dict(preprocess_cfg=preprocess_cfg)
|
||||||
|
@ -2,5 +2,9 @@ _base_ = [
|
|||||||
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py',
|
||||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=150),
|
||||||
|
auxiliary_head=dict(num_classes=150))
|
||||||
|
@ -3,5 +3,9 @@ _base_ = [
|
|||||||
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_20k.py'
|
'../_base_/schedules/schedule_20k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=21),
|
||||||
|
auxiliary_head=dict(num_classes=21))
|
||||||
|
@ -3,5 +3,9 @@ _base_ = [
|
|||||||
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
|
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
|
||||||
'../_base_/schedules/schedule_40k.py'
|
'../_base_/schedules/schedule_40k.py'
|
||||||
]
|
]
|
||||||
|
crop_size = (512, 512)
|
||||||
|
preprocess_cfg = dict(size=crop_size)
|
||||||
model = dict(
|
model = dict(
|
||||||
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21))
|
preprocess_cfg=preprocess_cfg,
|
||||||
|
decode_head=dict(num_classes=21),
|
||||||
|
auxiliary_head=dict(num_classes=21))
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user