[Refactor] Refactor decode_head and segmentors and add preprocess_cfg

This commit is contained in:
linfangjian.vendor 2022-06-10 14:02:40 +00:00 committed by zhengmiao
parent 19f39539de
commit dd9c411335
351 changed files with 1915 additions and 700 deletions

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'ADE20KDataset' dataset_type = 'ADE20KDataset'
data_root = 'data/ade/ADEChallengeData2016' data_root = 'data/ade/ADEChallengeData2016'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'ADE20KDataset' dataset_type = 'ADE20KDataset'
data_root = 'data/ade/ADEChallengeData2016' data_root = 'data/ade/ADEChallengeData2016'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (640, 640) crop_size = (640, 640)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'ChaseDB1Dataset' dataset_type = 'ChaseDB1Dataset'
data_root = 'data/CHASE_DB1' data_root = 'data/CHASE_DB1'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (960, 999) img_scale = (960, 999)
crop_size = (128, 128) crop_size = (128, 128)
train_pipeline = [ train_pipeline = [
@ -12,7 +10,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'CityscapesDataset' dataset_type = 'CityscapesDataset'
data_root = 'data/cityscapes/' data_root = 'data/cityscapes/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 1024) crop_size = (512, 1024)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,6 +1,4 @@
_base_ = './cityscapes.py' _base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (1024, 1024) crop_size = (1024, 1024)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -9,7 +7,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,6 +1,4 @@
_base_ = './cityscapes.py' _base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (768, 768) crop_size = (768, 768)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -9,7 +7,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,6 +1,4 @@
_base_ = './cityscapes.py' _base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (769, 769) crop_size = (769, 769)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -9,7 +7,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,6 +1,4 @@
_base_ = './cityscapes.py' _base_ = './cityscapes.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (832, 832) crop_size = (832, 832)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -9,7 +7,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'COCOStuffDataset' dataset_type = 'COCOStuffDataset'
data_root = 'data/coco_stuff10k' data_root = 'data/coco_stuff10k'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'COCOStuffDataset' dataset_type = 'COCOStuffDataset'
data_root = 'data/coco_stuff164k' data_root = 'data/coco_stuff164k'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'DRIVEDataset' dataset_type = 'DRIVEDataset'
data_root = 'data/DRIVE' data_root = 'data/DRIVE'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (584, 565) img_scale = (584, 565)
crop_size = (64, 64) crop_size = (64, 64)
train_pipeline = [ train_pipeline = [
@ -12,7 +10,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'HRFDataset' dataset_type = 'HRFDataset'
data_root = 'data/HRF' data_root = 'data/HRF'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (2336, 3504) img_scale = (2336, 3504)
crop_size = (256, 256) crop_size = (256, 256)
train_pipeline = [ train_pipeline = [
@ -12,7 +10,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,9 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'iSAIDDataset' dataset_type = 'iSAIDDataset'
data_root = 'data/iSAID' data_root = 'data/iSAID'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
""" """
This crop_size setting is followed by the implementation of This crop_size setting is followed by the implementation of
`PointFlow: Flowing Semantics Through Points for Aerial Image `PointFlow: Flowing Semantics Through Points for Aerial Image
@ -19,7 +16,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'LoveDADataset' dataset_type = 'LoveDADataset'
data_root = 'data/loveDA' data_root = 'data/loveDA'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'PascalContextDataset' dataset_type = 'PascalContextDataset'
data_root = 'data/VOCdevkit/VOC2010/' data_root = 'data/VOCdevkit/VOC2010/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (520, 520) img_scale = (520, 520)
crop_size = (480, 480) crop_size = (480, 480)
@ -14,7 +12,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'PascalContextDataset59' dataset_type = 'PascalContextDataset59'
data_root = 'data/VOCdevkit/VOC2010/' data_root = 'data/VOCdevkit/VOC2010/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (520, 520) img_scale = (520, 520)
crop_size = (480, 480) crop_size = (480, 480)
@ -14,7 +12,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'PascalVOCDataset' dataset_type = 'PascalVOCDataset'
data_root = 'data/VOCdevkit/VOC2012' data_root = 'data/VOCdevkit/VOC2012'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'PotsdamDataset' dataset_type = 'PotsdamDataset'
data_root = 'data/potsdam' data_root = 'data/potsdam'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'STAREDataset' dataset_type = 'STAREDataset'
data_root = 'data/STARE' data_root = 'data/STARE'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
img_scale = (605, 700) img_scale = (605, 700)
crop_size = (128, 128) crop_size = (128, 128)
train_pipeline = [ train_pipeline = [
@ -12,7 +10,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,8 +1,6 @@
# dataset settings # dataset settings
dataset_type = 'ISPRSDataset' dataset_type = 'ISPRSDataset'
data_root = 'data/vaihingen' data_root = 'data/vaihingen'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512) crop_size = (512, 512)
train_pipeline = [ train_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
@ -11,7 +9,6 @@ train_pipeline = [
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5), dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'), dict(type='PhotoMetricDistortion'),
dict(type='Pad', size=crop_size),
dict(type='PackSegInputs') dict(type='PackSegInputs')
] ]
test_pipeline = [ test_pipeline = [

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='BiSeNetV1', type='BiSeNetV1',
in_channels=3, in_channels=3,

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='BiSeNetV2', type='BiSeNetV2',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True) norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
preprocess_cfg = dict(
mean=[72.39239876, 82.90891754, 73.15835921],
std=[1, 1, 1],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='CGNet', type='CGNet',
norm_cfg=norm_cfg, norm_cfg=norm_cfg,

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='UNet', type='UNet',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,6 +1,13 @@
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='ERFNet', type='ERFNet',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01) norm_cfg = dict(type='SyncBN', requires_grad=True, momentum=0.01)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='FastSCNN', type='FastSCNN',
downsample_dw_channels=(32, 48), downsample_dw_channels=(32, 48),

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://msra/hrnetv2_w18', pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict( backbone=dict(
type='HRNet', type='HRNet',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='UNet', type='UNet',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='ICNet', type='ICNet',
backbone_cfg=dict( backbone_cfg=dict(

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True) norm_cfg = dict(type='SyncBN', eps=0.001, requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='MobileNetV3', type='MobileNetV3',
arch='large', arch='large',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='CascadeEncoderDecoder', type='CascadeEncoderDecoder',
preprocess_cfg=preprocess_cfg,
num_stages=2, num_stages=2,
pretrained='open-mmlab://msra/hrnetv2_w18', pretrained='open-mmlab://msra/hrnetv2_w18',
backbone=dict( backbone=dict(

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='CascadeEncoderDecoder', type='CascadeEncoderDecoder',
preprocess_cfg=preprocess_cfg,
num_stages=2, num_stages=2,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='CascadeEncoderDecoder', type='CascadeEncoderDecoder',
preprocess_cfg=preprocess_cfg,
num_stages=2, num_stages=2,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='UNet', type='UNet',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='MixVisionTransformer', type='MixVisionTransformer',

View File

@ -1,8 +1,15 @@
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_base_p16_384_20220308-96dfe169.pth' # noqa checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segmenter/vit_base_p16_384_20220308-96dfe169.pth' # noqa
# model settings # model settings
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
preprocess_cfg = dict(
mean=[127.5, 127.5, 127.5],
std=[127.5, 127.5, 127.5],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=checkpoint, pretrained=checkpoint,
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -1,8 +1,15 @@
# model settings # model settings
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -1,8 +1,15 @@
# model settings # model settings
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -1,8 +1,15 @@
# model settings # model settings
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True) backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth', pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -1,6 +1,13 @@
norm_cfg = dict(type='BN', requires_grad=True) norm_cfg = dict(type='BN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='STDCContextPathNet', type='STDCContextPathNet',

View File

@ -3,8 +3,15 @@ checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/
# model settings # model settings
backbone_norm_cfg = dict(type='LN') backbone_norm_cfg = dict(type='LN')
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='PCPVT', type='PCPVT',
init_cfg=dict(type='Pretrained', checkpoint=checkpoint), init_cfg=dict(type='Pretrained', checkpoint=checkpoint),

View File

@ -3,8 +3,15 @@ checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/
# model settings # model settings
backbone_norm_cfg = dict(type='LN') backbone_norm_cfg = dict(type='LN')
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='PCPVT', type='PCPVT',
init_cfg=dict(type='Pretrained', checkpoint=checkpoint), init_cfg=dict(type='Pretrained', checkpoint=checkpoint),

View File

@ -1,6 +1,13 @@
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='BEiT', type='BEiT',

View File

@ -1,8 +1,15 @@
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
custom_imports = dict(imports='mmcls.models', allow_failed_imports=False) custom_imports = dict(imports='mmcls.models', allow_failed_imports=False)
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-base_3rdparty_32xb128-noema_in1k_20220301-2a0ee547.pth' # noqa
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='mmcls.ConvNeXt', type='mmcls.ConvNeXt',

View File

@ -1,6 +1,13 @@
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='MAE', type='MAE',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='open-mmlab://resnet50_v1c', pretrained='open-mmlab://resnet50_v1c',
backbone=dict( backbone=dict(
type='ResNetV1c', type='ResNetV1c',

View File

@ -1,8 +1,15 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
backbone_norm_cfg = dict(type='LN', requires_grad=True) backbone_norm_cfg = dict(type='LN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained=None, pretrained=None,
backbone=dict( backbone=dict(
type='SwinTransformer', type='SwinTransformer',

View File

@ -1,7 +1,14 @@
# model settings # model settings
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth', pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth',
backbone=dict( backbone=dict(
type='VisionTransformer', type='VisionTransformer',

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=21),
auxiliary_head=dict(num_classes=21))

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/pascal_voc12_aug.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=21),
auxiliary_head=dict(num_classes=21))

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py', '../_base_/models/ann_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py' '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (769, 769)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict(align_corners=True), decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True), auxiliary_head=dict(align_corners=True),
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513))) test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_80k.py' '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (769, 769)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict(align_corners=True), decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True), auxiliary_head=dict(align_corners=True),
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513))) test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py', '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py' '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (769, 769)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict(align_corners=True), decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True), auxiliary_head=dict(align_corners=True),
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513))) test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_80k.py' '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (769, 769)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict(align_corners=True), decode_head=dict(align_corners=True),
auxiliary_head=dict(align_corners=True), auxiliary_head=dict(align_corners=True),
test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513))) test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513)))

View File

@ -1,8 +1,5 @@
_base_ = './upernet_beit-base_8x2_640x640_160k_ade20k.py' _base_ = './upernet_beit-base_8x2_640x640_160k_ade20k.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
# TODO: Refactor 'MultiScaleFlipAug' which supports # TODO: Refactor 'MultiScaleFlipAug' which supports

View File

@ -2,8 +2,10 @@ _base_ = [
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (640, 640)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth', pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth',
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426))) test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426)))

View File

@ -1,8 +1,5 @@
_base_ = './upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py' _base_ = './upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
test_pipeline = [ test_pipeline = [
dict(type='LoadImageFromFile'), dict(type='LoadImageFromFile'),
# TODO: Refactor 'MultiScaleFlipAug' which supports # TODO: Refactor 'MultiScaleFlipAug' which supports

View File

@ -2,8 +2,10 @@ _base_ = [
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_320k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_320k.py'
] ]
crop_size = (640, 640)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
pretrained='pretrain/beit_large_patch16_224_pt22k_ft22k.pth', pretrained='pretrain/beit_large_patch16_224_pt22k_ft22k.pth',
backbone=dict( backbone=dict(
type='BEiT', type='BEiT',

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py' '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
context_channels=(512, 1024, 2048), context_channels=(512, 1024, 2048),
spatial_channels=(256, 256, 256, 512), spatial_channels=(256, 256, 256, 512),

View File

@ -3,6 +3,9 @@ _base_ = [
'../_base_/datasets/cityscapes_1024x1024.py', '../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)
param_scheduler = [ param_scheduler = [
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000), dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
dict( dict(

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/cityscapes_1024x1024.py', '../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
backbone_cfg=dict( backbone_cfg=dict(
init_cfg=dict( init_cfg=dict(

View File

@ -1,6 +1,10 @@
_base_ = './bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py' _base_ = './bisenetv1_r18-d32_lr5e-3_4x4_512x512_160k_coco-stuff164k.py'
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
backbone_cfg=dict( backbone_cfg=dict(
init_cfg=dict( init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))), ) type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))),
)

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py' '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=171), decode_head=dict(num_classes=171),
auxiliary_head=[ auxiliary_head=[
dict(num_classes=171), dict(num_classes=171),

View File

@ -4,8 +4,11 @@ _base_ = [
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
type='EncoderDecoder', type='EncoderDecoder',
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
type='BiSeNetV1', type='BiSeNetV1',
context_channels=(512, 1024, 2048), context_channels=(512, 1024, 2048),

View File

@ -3,7 +3,10 @@ _base_ = [
'../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py' '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
preprocess_cfg=preprocess_cfg,
backbone=dict( backbone=dict(
context_channels=(512, 1024, 2048), context_channels=(512, 1024, 2048),
spatial_channels=(256, 256, 256, 512), spatial_channels=(256, 256, 256, 512),

View File

@ -3,6 +3,9 @@ _base_ = [
'../_base_/datasets/cityscapes_1024x1024.py', '../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)
param_scheduler = [ param_scheduler = [
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000), dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
dict( dict(

View File

@ -3,6 +3,9 @@ _base_ = [
'../_base_/datasets/cityscapes_1024x1024.py', '../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)
param_scheduler = [ param_scheduler = [
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000), dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
dict( dict(

View File

@ -3,8 +3,11 @@ _base_ = [
'../_base_/datasets/cityscapes_1024x1024.py', '../_base_/datasets/cityscapes_1024x1024.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (1024, 1024)
preprocess_cfg = dict(size=crop_size)
norm_cfg = dict(type='SyncBN', requires_grad=True) norm_cfg = dict(type='SyncBN', requires_grad=True)
models = dict( models = dict(
preprocess_cfg=preprocess_cfg,
decode_head=dict( decode_head=dict(
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)), sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
auxiliary_head=[ auxiliary_head=[

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,3 +2,6 @@ _base_ = [
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py', '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
] ]
crop_size = (512, 1024)
preprocess_cfg = dict(size=crop_size)
model = dict(preprocess_cfg=preprocess_cfg)

View File

@ -2,5 +2,9 @@ _base_ = [
'../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py', '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

View File

@ -3,5 +3,9 @@ _base_ = [
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_20k.py' '../_base_/schedules/schedule_20k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=21),
auxiliary_head=dict(num_classes=21))

View File

@ -3,5 +3,9 @@ _base_ = [
'../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py', '../_base_/datasets/pascal_voc12_aug.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_40k.py' '../_base_/schedules/schedule_40k.py'
] ]
crop_size = (512, 512)
preprocess_cfg = dict(size=crop_size)
model = dict( model = dict(
decode_head=dict(num_classes=21), auxiliary_head=dict(num_classes=21)) preprocess_cfg=preprocess_cfg,
decode_head=dict(num_classes=21),
auxiliary_head=dict(num_classes=21))

Some files were not shown because too many files have changed in this diff Show More