mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Enhancement] Refine the docstring of ResNet (#723)
* refine docstring of resnet * refine docstring
This commit is contained in:
parent
50461efe85
commit
e09c700f15
@ -312,25 +312,38 @@ class ResNet(BaseModule):
|
||||
|
||||
Args:
|
||||
depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
|
||||
in_channels (int): Number of input image channels. Default" 3.
|
||||
in_channels (int): Number of input image channels. Default: 3.
|
||||
stem_channels (int): Number of stem channels. Default: 64.
|
||||
base_channels (int): Number of base channels of res layer. Default: 64.
|
||||
num_stages (int): Resnet stages, normally 4.
|
||||
num_stages (int): Resnet stages, normally 4. Default: 4.
|
||||
strides (Sequence[int]): Strides of the first block of each stage.
|
||||
Default: (1, 2, 2, 2).
|
||||
dilations (Sequence[int]): Dilation of each stage.
|
||||
Default: (1, 1, 1, 1).
|
||||
out_indices (Sequence[int]): Output from which stages.
|
||||
Default: (0, 1, 2, 3).
|
||||
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
|
||||
layer is the 3x3 conv layer, otherwise the stride-two layer is
|
||||
the first 1x1 conv layer.
|
||||
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
|
||||
the first 1x1 conv layer. Default: 'pytorch'.
|
||||
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
|
||||
Default: False.
|
||||
avg_down (bool): Use AvgPool instead of stride conv when
|
||||
downsampling in the bottleneck.
|
||||
downsampling in the bottleneck. Default: False.
|
||||
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
||||
-1 means not freezing any parameters.
|
||||
-1 means not freezing any parameters. Default: -1.
|
||||
conv_cfg (dict | None): Dictionary to construct and config conv layer.
|
||||
When conv_cfg is None, cfg will be set to dict(type='Conv2d').
|
||||
Default: None.
|
||||
norm_cfg (dict): Dictionary to construct and config norm layer.
|
||||
Default: dict(type='BN', requires_grad=True).
|
||||
norm_eval (bool): Whether to set norm layers to eval mode, namely,
|
||||
freeze running stats (mean and var). Note: Effect on Batch Norm
|
||||
and its variants only.
|
||||
and its variants only. Default: False.
|
||||
dcn (dict | None): Dictionary to construct and config DCN conv layer.
|
||||
When dcn is not None, conv_cfg must be None. Default: None.
|
||||
stage_with_dcn (Sequence[bool]): Whether to set DCN conv for each
|
||||
stage. The length of stage_with_dcn is equal to num_stages.
|
||||
Default: (False, False, False, False).
|
||||
plugins (list[dict]): List of plugins for stages, each dict contains:
|
||||
|
||||
- cfg (dict, required): Cfg dict to build plugin.
|
||||
@ -339,18 +352,19 @@ class ResNet(BaseModule):
|
||||
options: 'after_conv1', 'after_conv2', 'after_conv3'.
|
||||
|
||||
- stages (tuple[bool], optional): Stages to apply plugin, length
|
||||
should be same as 'num_stages'
|
||||
should be same as 'num_stages'.
|
||||
Default: None.
|
||||
multi_grid (Sequence[int]|None): Multi grid dilation rates of last
|
||||
stage. Default: None
|
||||
stage. Default: None.
|
||||
contract_dilation (bool): Whether contract first dilation of each layer
|
||||
Default: False
|
||||
Default: False.
|
||||
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
|
||||
memory while slowing down the training speed.
|
||||
memory while slowing down the training speed. Default: False.
|
||||
zero_init_residual (bool): Whether to use zero init for last norm layer
|
||||
in resblocks to let them behave as identity.
|
||||
pretrained (str, optional): model pretrained path. Default: None
|
||||
in resblocks to let them behave as identity. Default: True.
|
||||
pretrained (str, optional): model pretrained path. Default: None.
|
||||
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||
Default: None
|
||||
Default: None.
|
||||
|
||||
Example:
|
||||
>>> from mmseg.models import ResNet
|
||||
|
Loading…
x
Reference in New Issue
Block a user