relevant files modified according to Jerry's instructions
parent
d8cba3d6a9
commit
e1986a5e5e
|
@ -17,7 +17,7 @@ model = dict(
|
|||
norm_cfg=norm_cfg,
|
||||
align_corners=False),
|
||||
decode_head=dict(
|
||||
type='SepFCNHead',
|
||||
type='DepthwiseSeparableFCNHead',
|
||||
in_channels=128,
|
||||
channels=128,
|
||||
concat_input=False,
|
||||
|
@ -53,3 +53,7 @@ model = dict(
|
|||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
])
|
||||
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
|
|
@ -1,19 +1,16 @@
|
|||
_base_ = [
|
||||
'../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py'
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
crop_size = (512, 1024)
|
||||
cudnn_benchmark = True
|
||||
# model training and testing settings
|
||||
train_cfg = dict()
|
||||
test_cfg = dict(mode='whole')
|
||||
|
||||
# Here: What is parameter 'with_seg'?
|
||||
# dataset settings
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', to_float32=True),
|
||||
dict(type='LoadAnnotations'), # with_seg=True
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
||||
dict(type='RandomFlip', flip_ratio=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
|
@ -37,6 +34,8 @@ test_pipeline = [
|
|||
dict(type='Collect', keys=['img']),
|
||||
])
|
||||
]
|
||||
|
||||
# Re-config the data sampler.
|
||||
data = dict(
|
||||
samples_per_gpu=8,
|
||||
workers_per_gpu=4,
|
||||
|
@ -44,21 +43,5 @@ data = dict(
|
|||
val=dict(pipeline=test_pipeline),
|
||||
test=dict(pipeline=test_pipeline))
|
||||
|
||||
# optimizer
|
||||
# Re-config the optimizer.
|
||||
optimizer = dict(type='SGD', lr=0.12, momentum=0.9, weight_decay=4e-5)
|
||||
optimizer_config = dict()
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='poly',
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
)
|
||||
# runtime settings
|
||||
# total_epochs = 1000
|
||||
total_iters = 80000
|
||||
evaluation = dict(interval=2000, metric='mIoU')
|
||||
checkpoint_config = dict(interval=2000)
|
||||
|
||||
# log config: log by iter.
|
||||
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
||||
|
||||
|
|
|
@ -228,6 +228,49 @@ class FeatureFusionModule(nn.Module):
|
|||
|
||||
@BACKBONES.register_module()
|
||||
class FastSCNN(nn.Module):
|
||||
"""Fast-SCNN Backbone.
|
||||
Args:
|
||||
in_channels (int): Number of input image channels. Default=3 (RGB)
|
||||
|
||||
downsample_dw_channels1 (int): Number of output channels after
|
||||
the first conv layer in Learning-To-Downsample (LTD) module.
|
||||
|
||||
downsample_dw_channels2 (int): Number of output channels
|
||||
after the second conv layer in LTD.
|
||||
|
||||
global_in_channels (int): Number of input channels of
|
||||
Global Feature Extractor(GFE).
|
||||
Equal to number of output channels of LTD.
|
||||
|
||||
global_block_channels (tuple): Tuple of integers that describe
|
||||
the output channels for each of the MobileNet-v2 bottleneck
|
||||
residual blocks in GFE.
|
||||
|
||||
global_out_channels (int): Number of output channels of GFE.
|
||||
|
||||
higher_in_channels (int): Number of input channels of the higher
|
||||
resolution branch in FFM.
|
||||
Equal to global_in_channels.
|
||||
|
||||
lower_in_channels (int): Number of input channels of the lower
|
||||
resolution branch in FFM.
|
||||
Equal to global_out_channels.
|
||||
|
||||
fusion_out_channels (int): Number of output channels of FFM.
|
||||
|
||||
scale_factor (int): The upsampling factor of the higher resolution
|
||||
branch in FFM.
|
||||
Equal to the downsampling factor in GFE.
|
||||
|
||||
out_indices (tuple): Tuple of indices of list
|
||||
[higher_res_features, lower_res_features, fusion_output].
|
||||
Often set to (0,1,2) to enable aux. heads.
|
||||
|
||||
conv_cfg (dict|None): Config of conv layers.
|
||||
norm_cfg (dict|None): Config of norm layers.
|
||||
act_cfg (dict): Config of activation layers.
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
|
@ -245,49 +288,6 @@ class FastSCNN(nn.Module):
|
|||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='ReLU'),
|
||||
align_corners=False):
|
||||
"""Fast-SCNN Backbone.
|
||||
Args:
|
||||
in_channels (int): Number of input image channels. Default=3 (RGB)
|
||||
|
||||
downsample_dw_channels1 (int): Number of output channels after
|
||||
the first conv layer in Learning-To-Downsample (LTD) module.
|
||||
|
||||
downsample_dw_channels2 (int): Number of output channels
|
||||
after the second conv layer in LTD.
|
||||
|
||||
global_in_channels (int): Number of input channels of
|
||||
Global Feature Extractor(GFE).
|
||||
Equal to number of output channels of LTD.
|
||||
|
||||
global_block_channels (tuple): Tuple of integers that describe
|
||||
the output channels for each of the MobileNet-v2 bottleneck
|
||||
residual blocks in GFE.
|
||||
|
||||
global_out_channels (int): Number of output channels of GFE.
|
||||
|
||||
higher_in_channels (int): Number of input channels of the higher
|
||||
resolution branch in FFM.
|
||||
Equal to global_in_channels.
|
||||
|
||||
lower_in_channels (int): Number of input channels of the lower
|
||||
resolution branch in FFM.
|
||||
Equal to global_out_channels.
|
||||
|
||||
fusion_out_channels (int): Number of output channels of FFM.
|
||||
|
||||
scale_factor (int): The upsampling factor of the higher resolution
|
||||
branch in FFM.
|
||||
Equal to the downsampling factor in GFE.
|
||||
|
||||
out_indices (tuple): Tuple of indices of list
|
||||
[higher_res_features, lower_res_features, fusion_output].
|
||||
Often set to (0,1,2) to enable aux. heads.
|
||||
|
||||
conv_cfg (dict|None): Config of conv layers.
|
||||
norm_cfg (dict|None): Config of norm layers.
|
||||
act_cfg (dict): Config of activation layers.
|
||||
align_corners (bool): align_corners argument of F.interpolate.
|
||||
"""
|
||||
|
||||
super(FastSCNN, self).__init__()
|
||||
if global_in_channels != higher_in_channels:
|
||||
|
|
|
@ -1,11 +1,5 @@
|
|||
from mmcv.cnn import (ConvModule, build_norm_layer, constant_init,
|
||||
kaiming_init, normal_init)
|
||||
from mmcv.runner import load_checkpoint
|
||||
from mmcv.cnn import ConvModule, build_norm_layer
|
||||
from torch import nn
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from mmseg.utils import get_root_logger
|
||||
from ..builder import BACKBONES
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
|
@ -61,143 +55,3 @@ class InvertedResidual(nn.Module):
|
|||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class MobileNetV2(nn.Module):
|
||||
arch_settings = (
|
||||
InvertedResidual,
|
||||
[
|
||||
# t, c, n, s
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1]
|
||||
])
|
||||
|
||||
def __init__(self,
|
||||
in_channels=3,
|
||||
dilations=(1, 1, 1, 1, 1),
|
||||
out_indices=(0, 1, 2, 3),
|
||||
input_channels=32,
|
||||
width_mult=1.0,
|
||||
round_nearest=8,
|
||||
conv_cfg=None,
|
||||
norm_cfg=dict(type='BN'),
|
||||
act_cfg=dict(type='ReLU6')):
|
||||
"""
|
||||
MobileNet V2 main class
|
||||
Args:
|
||||
width_mult (float): Width multiplier - adjusts number of channels
|
||||
in each layer by this amount
|
||||
round_nearest (int): Round the number of channels in each layer to
|
||||
be a multiple of this number
|
||||
Set to 1 to turn off rounding
|
||||
block: Module specifying inverted residual building block for
|
||||
mobilenet
|
||||
"""
|
||||
super(MobileNetV2, self).__init__()
|
||||
self.in_channels = in_channels
|
||||
self.width_mult = width_mult
|
||||
self.conv_cfg = conv_cfg
|
||||
self.norm_cfg = norm_cfg
|
||||
self.act_cfg = act_cfg
|
||||
|
||||
block, inverted_residual_setting = self.arch_settings
|
||||
self.dilations = dilations
|
||||
self.out_indices = out_indices
|
||||
|
||||
# building first layer
|
||||
input_channels = int(
|
||||
input_channels *
|
||||
self.width_mult) if self.width_mult > 1.0 else input_channels
|
||||
# last_channels = int(1280 * multiplier) if multiplier > 1.0 else 1280
|
||||
self.conv1 = ConvModule(
|
||||
3,
|
||||
input_channels,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
conv_cfg=self.conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
act_cfg=self.act_cfg)
|
||||
|
||||
# building inverted residual blocks
|
||||
self.planes = input_channels
|
||||
self.block1 = self._make_layer(block, self.planes,
|
||||
inverted_residual_setting[0:1],
|
||||
dilations[0])
|
||||
self.block2 = self._make_layer(block, self.planes,
|
||||
inverted_residual_setting[1:2],
|
||||
dilations[1])
|
||||
self.block3 = self._make_layer(block, self.planes,
|
||||
inverted_residual_setting[2:3],
|
||||
dilations[2])
|
||||
self.block4 = self._make_layer(block, self.planes,
|
||||
inverted_residual_setting[3:5],
|
||||
dilations[3])
|
||||
self.block5 = self._make_layer(block, self.planes,
|
||||
inverted_residual_setting[5:],
|
||||
dilations[4])
|
||||
|
||||
def _make_layer(self,
|
||||
block,
|
||||
planes,
|
||||
inverted_residual_setting,
|
||||
dilation=1):
|
||||
features = list()
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
out_channels = int(c * self.width_mult)
|
||||
stride = s if dilation == 1 else 1
|
||||
features.append(
|
||||
block(
|
||||
planes,
|
||||
out_channels,
|
||||
stride,
|
||||
t,
|
||||
dilation,
|
||||
conv_cfg=self.conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
act_cfg=self.act_cfg))
|
||||
planes = out_channels
|
||||
for i in range(n - 1):
|
||||
features.append(
|
||||
block(
|
||||
planes,
|
||||
out_channels,
|
||||
1,
|
||||
t,
|
||||
conv_cfg=self.conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
act_cfg=self.act_cfg))
|
||||
planes = out_channels
|
||||
self.planes = planes
|
||||
return nn.Sequential(*features)
|
||||
|
||||
def init_weights(self, pretrained=None):
|
||||
if isinstance(pretrained, str):
|
||||
logger = get_root_logger()
|
||||
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
||||
else:
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
kaiming_init(m, mode='fan_out')
|
||||
elif isinstance(m, _BatchNorm):
|
||||
constant_init(m, 1)
|
||||
elif isinstance(m, nn.Linear):
|
||||
normal_init(m, 0, 0.01)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.block1(x)
|
||||
c1 = self.block2(x)
|
||||
c2 = self.block3(c1)
|
||||
c3 = self.block4(c2)
|
||||
c4 = self.block5(c3)
|
||||
|
||||
outs = [c1, c2, c3, c4]
|
||||
outs = [outs[i] for i in self.out_indices]
|
||||
return tuple(outs)
|
||||
|
|
|
@ -10,11 +10,11 @@ from .ocr_head import OCRHead
|
|||
from .psa_head import PSAHead
|
||||
from .psp_head import PSPHead
|
||||
from .sep_aspp_head import DepthwiseSeparableASPPHead
|
||||
from .sep_fcn_head import DepthwiseSeparableFCNHead
|
||||
from .uper_head import UPerHead
|
||||
from .sep_fcn_head import SepFCNHead
|
||||
|
||||
__all__ = [
|
||||
'FCNHead', 'PSPHead', 'ASPPHead', 'PSAHead', 'NLHead', 'GCHead', 'CCHead',
|
||||
'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead',
|
||||
'EncHead', 'SepFCNHead'
|
||||
'EncHead', 'DepthwiseSeparableFCNHead'
|
||||
]
|
||||
|
|
|
@ -4,7 +4,7 @@ from .fcn_head import FCNHead
|
|||
|
||||
|
||||
@HEADS.register_module()
|
||||
class SepFCNHead(FCNHead):
|
||||
class DepthwiseSeparableFCNHead(FCNHead):
|
||||
"""Depthwise-Separable Fully Convolutional Network for Semantic
|
||||
Segmentation.
|
||||
|
||||
|
@ -15,7 +15,7 @@ class SepFCNHead(FCNHead):
|
|||
channels(int): Number of middle-stage channels in the decode head.
|
||||
|
||||
concat_input(bool): Whether to concatenate original decode input into
|
||||
the result of consecutive convolution layers.
|
||||
the result of several consecutive convolution layers.
|
||||
|
||||
num_classes(int): Used to determine the dimension of
|
||||
final prediction tensor.
|
||||
|
@ -31,7 +31,7 @@ class SepFCNHead(FCNHead):
|
|||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super(SepFCNHead, self).__init__(**kwargs)
|
||||
super(DepthwiseSeparableFCNHead, self).__init__(**kwargs)
|
||||
self.convs[0] = DepthwiseSeparableConvModule(
|
||||
self.in_channels,
|
||||
self.channels,
|
||||
|
|
Loading…
Reference in New Issue