parent
8806b4e548
commit
e4c1865a82
|
@ -88,12 +88,12 @@ MMSegmentation v1.x brings remarkable improvements over the 0.x release, offerin
|
|||
|
||||
## What's New
|
||||
|
||||
v1.0.0 was released on 04/06/2023.
|
||||
v1.1.0 was released on 07/04/2023.
|
||||
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
|
||||
|
||||
- Add Mapillary Vistas Datasets support to MMSegmentation Core Package ([#2576](https://github.com/open-mmlab/mmsegmentation/pull/2576))
|
||||
- Support PIDNet ([#2609](https://github.com/open-mmlab/mmsegmentation/pull/2609))
|
||||
- Support SegNeXt ([#2654](https://github.com/open-mmlab/mmsegmentation/pull/2654))
|
||||
- Support 24 medical image datasets in [projects](./projects/medical/).
|
||||
- Add GDAL backend and support remote sensing datasets [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/pull/2903).
|
||||
- Support [DDRNet](https://github.com/open-mmlab/mmsegmentation/pull/2855).
|
||||
|
||||
## Installation
|
||||
|
||||
|
@ -252,6 +252,7 @@ Results and models are available in the [model zoo](docs/en/model_zoo.md).
|
|||
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isprs-vaihingen)
|
||||
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#isaid)
|
||||
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
|
||||
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
@ -87,7 +87,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了
|
|||
|
||||
## 更新日志
|
||||
|
||||
最新版本 v1.0.0 在 2023.04.06 发布。
|
||||
最新版本 v1.1.0 在 2023.07.04 发布。
|
||||
如果想了解更多版本更新细节和历史信息,请阅读[更新日志](docs/en/notes/changelog.md)。
|
||||
|
||||
## 安装
|
||||
|
@ -246,6 +246,7 @@ MMSegmentation v1.x 在 0.x 版本的基础上有了显著的提升,提供了
|
|||
- [x] [Vaihingen](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isprs-vaihingen)
|
||||
- [x] [iSAID](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/zh_cn/dataset_prepare.md#isaid)
|
||||
- [x] [Mapillary Vistas](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#mapillary-vistas-datasets)
|
||||
- [x] [LEVIR-CD](https://github.com/open-mmlab/mmsegmentation/blob/main/docs/en/user_guides/2_dataset_prepare.md#levir-cd)
|
||||
|
||||
</details>
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
# model settings
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/poolformer/poolformer-s12_3rdparty_32xb128_in1k_20220414-f8d83051.pth' # noqa
|
||||
# TODO: delete custom_imports after mmcls supports auto import
|
||||
# please install mmcls>=1.0
|
||||
# import mmcls.models to trigger register_module in mmcls
|
||||
# TODO: delete custom_imports after mmpretrain supports auto import
|
||||
# please install mmpretrain >= 1.0.0rc7
|
||||
# import mmpretrain.models to trigger register_module in mmpretrain
|
||||
custom_imports = dict(
|
||||
imports=['mmpretrain.models'], allow_failed_imports=False)
|
||||
data_preprocessor = dict(
|
||||
|
|
|
@ -27,7 +27,7 @@ The "Roaring 20s" of visual recognition began with the introduction of Vision Tr
|
|||
- ConvNeXt backbone needs to install [MMClassification](https://github.com/open-mmlab/mmclassification) first, which has abundant backbones for downstream tasks.
|
||||
|
||||
```shell
|
||||
pip install mmcls>=0.20.1
|
||||
pip install mmpretrain>=1.0.0rc7
|
||||
```
|
||||
|
||||
### Pre-trained Models
|
||||
|
|
|
@ -4,7 +4,7 @@ ARG CUDNN="8"
|
|||
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
||||
|
||||
ARG MMCV="2.0.0"
|
||||
ARG MMSEG="1.0.0"
|
||||
ARG MMSEG="1.1.0"
|
||||
|
||||
ENV PYTHONUNBUFFERED TRUE
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
In this section we demonstrate how to prepare an environment with PyTorch.
|
||||
|
||||
MMSegmentation works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.5+.
|
||||
MMSegmentation works on Linux, Windows and macOS. It requires Python 3.7+, CUDA 10.2+ and PyTorch 1.8+.
|
||||
|
||||
**Note:**
|
||||
If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section](##installation). Otherwise, you can follow these steps for the preparation.
|
||||
|
|
|
@ -1,5 +1,91 @@
|
|||
# Changelog of v1.x
|
||||
|
||||
## v1.1.0(06/28/2023)
|
||||
|
||||
## What's Changed
|
||||
|
||||
### Features
|
||||
|
||||
- Support albu transform ([#2943](https://github.com/open-mmlab/mmsegmentation/pull/2943))
|
||||
- Support DDRNet ([#2855](https://github.com/open-mmlab/mmsegmentation/pull/2855))
|
||||
- Add GDAL backend and Support LEVIR-CD Dataset ([#2903](https://github.com/open-mmlab/mmsegmentation/pull/2903))
|
||||
- Support DSDL Dataset ([#2925](https://github.com/open-mmlab/mmsegmentation/pull/2925))
|
||||
- huasdorff distance loss ([#2820](https://github.com/open-mmlab/mmsegmentation/pull/2820))
|
||||
|
||||
### New Projects
|
||||
|
||||
- Support SAM inferencer ([#2897](https://github.com/open-mmlab/mmsegmentation/pull/2897))
|
||||
- Added a supported for Visual Attention Network (VAN) ([#2987](https://github.com/open-mmlab/mmsegmentation/pull/2987))
|
||||
- add GID dataset ([#3038](https://github.com/open-mmlab/mmsegmentation/pull/3038))
|
||||
- add Medical semantic seg dataset: Bactteria ([#2568](https://github.com/open-mmlab/mmsegmentation/pull/2568))
|
||||
- add Medical semantic seg dataset: Vampire ([#2633](https://github.com/open-mmlab/mmsegmentation/pull/2633))
|
||||
- add Medical semantic seg dataset: Ravir ([#2635](https://github.com/open-mmlab/mmsegmentation/pull/2635))
|
||||
- add Medical semantic seg dataset: Cranium ([#2675](https://github.com/open-mmlab/mmsegmentation/pull/2675))
|
||||
- add Medical semantic seg dataset: bccs ([#2861](https://github.com/open-mmlab/mmsegmentation/pull/2861))
|
||||
- add Medical semantic seg dataset: Gamma Task3 dataset ([#2695](https://github.com/open-mmlab/mmsegmentation/pull/2695))
|
||||
- add Medical semantic seg dataset: consep ([#2724](https://github.com/open-mmlab/mmsegmentation/pull/2724))
|
||||
- add Medical semantic seg dataset: breast_cancer_cell_seg dataset ([#2726](https://github.com/open-mmlab/mmsegmentation/pull/2726))
|
||||
- add Medical semantic seg dataset: chest_image_pneum dataset ([#2727](https://github.com/open-mmlab/mmsegmentation/pull/2727))
|
||||
- add Medical semantic seg dataset: conic2022 ([#2725](https://github.com/open-mmlab/mmsegmentation/pull/2725))
|
||||
- add Medical semantic seg dataset: dr_hagis ([#2729](https://github.com/open-mmlab/mmsegmentation/pull/2729))
|
||||
- add Medical semantic seg dataset: orvs ([#2728](https://github.com/open-mmlab/mmsegmentation/pull/2728))
|
||||
- add Medical semantic seg dataset: ISIC-2016 Task1 ([#2708](https://github.com/open-mmlab/mmsegmentation/pull/2708))
|
||||
- add Medical semantic seg dataset: ISIC-2017 Task1 ([#2709](https://github.com/open-mmlab/mmsegmentation/pull/2709))
|
||||
- add Medical semantic seg dataset: Kvasir seg ([#2677](https://github.com/open-mmlab/mmsegmentation/pull/2677))
|
||||
- add Medical semantic seg dataset: Kvasir seg aliyun ([#2678](https://github.com/open-mmlab/mmsegmentation/pull/2678))
|
||||
- add Medical semantic seg dataset: Rite ([#2680](https://github.com/open-mmlab/mmsegmentation/pull/2680))
|
||||
- add Medical semantic seg dataset: Fusc2021 ([#2682](https://github.com/open-mmlab/mmsegmentation/pull/2682))
|
||||
- add Medical semantic seg dataset: 2pm vessel ([#2685](https://github.com/open-mmlab/mmsegmentation/pull/2685))
|
||||
- add Medical semantic seg dataset: Pcam ([#2684](https://github.com/open-mmlab/mmsegmentation/pull/2684))
|
||||
- add Medical semantic seg dataset: Pannuke ([#2683](https://github.com/open-mmlab/mmsegmentation/pull/2683))
|
||||
- add Medical semantic seg dataset: Covid 19 ct cxr ([#2688](https://github.com/open-mmlab/mmsegmentation/pull/2688))
|
||||
- add Medical semantic seg dataset: Crass ([#2690](https://github.com/open-mmlab/mmsegmentation/pull/2690))
|
||||
- add Medical semantic seg dataset: Chest x ray images with pneumothorax masks ([#2687](https://github.com/open-mmlab/mmsegmentation/pull/2687))
|
||||
|
||||
### Enhancement
|
||||
|
||||
- Robust mapping from image path to seg map path ([#3091](https://github.com/open-mmlab/mmsegmentation/pull/3091))
|
||||
- Change assertion logic inference cfg.model.test_cfg ([#3012](https://github.com/open-mmlab/mmsegmentation/pull/3012))
|
||||
- Refactor dice loss ([#3002](https://github.com/open-mmlab/mmsegmentation/pull/3002))
|
||||
- Update Dockerfile libgl1-mesa-dev ([#3095](https://github.com/open-mmlab/mmsegmentation/pull/3095))
|
||||
- Prevent passed `ann_file` from silently failing to load ([#2966](https://github.com/open-mmlab/mmsegmentation/pull/2966))
|
||||
- Update the translation of models documentation ([#2833](https://github.com/open-mmlab/mmsegmentation/pull/2833))
|
||||
- Add docs contents at README.md ([#3083](https://github.com/open-mmlab/mmsegmentation/pull/3083))
|
||||
- Enhance swin pretrained model loading ([#3097](https://github.com/open-mmlab/mmsegmentation/pull/3097))
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
- Handle case where device is neither CPU nor CUDA in HamHead ([#2868](https://github.com/open-mmlab/mmsegmentation/pull/2868))
|
||||
- Fix bugs when out_channels==1 ([#2911](https://github.com/open-mmlab/mmsegmentation/pull/2911))
|
||||
- Fix binary C=1 focal loss & dataset fileio ([#2935](https://github.com/open-mmlab/mmsegmentation/pull/2935))
|
||||
- Fix isaid dataset pre-processing tool ([#3010](https://github.com/open-mmlab/mmsegmentation/pull/3010))
|
||||
- Fix bug cannot use both '--tta' and '--out' while testing ([#3067](https://github.com/open-mmlab/mmsegmentation/pull/3067))
|
||||
- Fix inferencer ut ([#3117](https://github.com/open-mmlab/mmsegmentation/pull/3117))
|
||||
- Fix document ([#2863](https://github.com/open-mmlab/mmsegmentation/pull/2863), [#2896](https://github.com/open-mmlab/mmsegmentation/pull/2896), [#2919](https://github.com/open-mmlab/mmsegmentation/pull/2919), [#2951](https://github.com/open-mmlab/mmsegmentation/pull/2951), [#2970](https://github.com/open-mmlab/mmsegmentation/pull/2970), [#2961](https://github.com/open-mmlab/mmsegmentation/pull/2961), [#3042](https://github.com/open-mmlab/mmsegmentation/pull/3042), )
|
||||
- Fix squeeze error when N=1 and C=1 ([#2933](https://github.com/open-mmlab/mmsegmentation/pull/2933))
|
||||
|
||||
## New Contributors
|
||||
|
||||
- @liu-mengyang made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2896
|
||||
- @likyoo made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2911
|
||||
- @1qh made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2902
|
||||
- @JoshuaChou2018 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2951
|
||||
- @jts250 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2833
|
||||
- @MGAMZ made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2970
|
||||
- @tianbinli made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2568
|
||||
- @Provable0816 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2633
|
||||
- @Zoulinx made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2903
|
||||
- @wufan-tb made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2925
|
||||
- @haruishi43 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2966
|
||||
- @Masaaki-75 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2675
|
||||
- @tang576225574 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/2987
|
||||
- @Kedreamix made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3010
|
||||
- @nightrain01 made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3067
|
||||
- @shigengtian made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3095
|
||||
- @SheffieldCao made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3097
|
||||
- @wangruohui made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3091
|
||||
- @LHamnett made their first contribution in https://github.com/open-mmlab/mmsegmentation/pull/3012
|
||||
|
||||
## v1.0.0(04/06/2023)
|
||||
|
||||
### Highlights
|
||||
|
|
|
@ -9,7 +9,8 @@ The compatible MMSegmentation, MMCV and MMEngine versions are as below. Please i
|
|||
| MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version |
|
||||
| :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: |
|
||||
| dev-1.x branch | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| 1.1.0 | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 |
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
本教程中,我们将会演示如何使用 PyTorch 准备环境。
|
||||
|
||||
MMSegmentation 可以在 Linux, Windows 和 macOS 系统上运行,并且需要安装 Python 3.6+, CUDA 9.2+ 和 PyTorch 1.5+
|
||||
MMSegmentation 可以在 Linux, Windows 和 macOS 系统上运行,并且需要安装 Python 3.7+, CUDA 10.2+ 和 PyTorch 1.8+
|
||||
|
||||
**注意:**
|
||||
如果您已经安装了 PyTorch, 可以跳过该部分,直接到[下一小节](##安装)。否则,您可以按照以下步骤操作。
|
||||
|
|
|
@ -9,7 +9,8 @@
|
|||
| MMSegmentation version | MMCV version | MMEngine version | MMClassification (optional) version | MMDetection (optional) version |
|
||||
| :--------------------: | :----------------------------: | :---------------: | :---------------------------------: | :----------------------------: |
|
||||
| dev-1.x branch | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| main branch | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| 1.1.0 | mmcv >= 2.0.0 | MMEngine >= 0.7.4 | mmpretrain>=1.0.0rc7 | mmdet >= 3.0.0 |
|
||||
| 1.0.0 | mmcv >= 2.0.0rc4 | MMEngine >= 0.7.1 | mmcls==1.0.0rc6 | mmdet >= 3.0.0 |
|
||||
| 1.0.0rc6 | mmcv >= 2.0.0rc4 | MMEngine >= 0.5.0 | mmcls>=1.0.0rc0 | mmdet >= 3.0.0rc6 |
|
||||
| 1.0.0rc5 | mmcv >= 2.0.0rc4 | MMEngine >= 0.2.0 | mmcls>=1.0.0rc0 | mmdet>=3.0.0rc6 |
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) Open-MMLab. All rights reserved.
|
||||
|
||||
__version__ = '1.0.0'
|
||||
__version__ = '1.1.0'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
|
Loading…
Reference in New Issue