mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] Update confusion_matrix.py (#3291)
## Motivation ## Modification The confusion_matrix.py is not compatible with the current version of mmseg. --------- Co-authored-by: xiexinch <xiexinch@outlook.com>
This commit is contained in:
parent
72e20a8854
commit
ebd5695104
@ -5,10 +5,14 @@ import os
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib.ticker import MultipleLocator
|
||||
from mmengine import Config, DictAction
|
||||
from mmengine.utils import ProgressBar, load
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.registry import init_default_scope
|
||||
from mmengine.utils import mkdir_or_exist, progressbar
|
||||
from PIL import Image
|
||||
|
||||
from mmseg.datasets import build_dataset
|
||||
from mmseg.registry import DATASETS
|
||||
|
||||
init_default_scope('mmseg')
|
||||
|
||||
|
||||
def parse_args():
|
||||
@ -16,7 +20,7 @@ def parse_args():
|
||||
description='Generate confusion matrix from segmentation results')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument(
|
||||
'prediction_path', help='prediction path where test .pkl result')
|
||||
'prediction_path', help='prediction path where test folder result')
|
||||
parser.add_argument(
|
||||
'save_dir', help='directory where confusion matrix will be saved')
|
||||
parser.add_argument(
|
||||
@ -50,15 +54,23 @@ def calculate_confusion_matrix(dataset, results):
|
||||
dataset (Dataset): Test or val dataset.
|
||||
results (list[ndarray]): A list of segmentation results in each image.
|
||||
"""
|
||||
n = len(dataset.CLASSES)
|
||||
n = len(dataset.METAINFO['classes'])
|
||||
confusion_matrix = np.zeros(shape=[n, n])
|
||||
assert len(dataset) == len(results)
|
||||
prog_bar = ProgressBar(len(results))
|
||||
ignore_index = dataset.ignore_index
|
||||
reduce_zero_label = dataset.reduce_zero_label
|
||||
prog_bar = progressbar.ProgressBar(len(results))
|
||||
for idx, per_img_res in enumerate(results):
|
||||
res_segm = per_img_res
|
||||
gt_segm = dataset.get_gt_seg_map_by_idx(idx)
|
||||
gt_segm = dataset[idx]['data_samples'] \
|
||||
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8)
|
||||
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten()
|
||||
if reduce_zero_label:
|
||||
gt_segm = gt_segm - 1
|
||||
to_ignore = gt_segm == ignore_index
|
||||
|
||||
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore]
|
||||
inds = n * gt_segm + res_segm
|
||||
inds = inds.flatten()
|
||||
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
|
||||
confusion_matrix += mat
|
||||
prog_bar.update()
|
||||
@ -70,7 +82,7 @@ def plot_confusion_matrix(confusion_matrix,
|
||||
save_dir=None,
|
||||
show=True,
|
||||
title='Normalized Confusion Matrix',
|
||||
color_theme='winter'):
|
||||
color_theme='OrRd'):
|
||||
"""Draw confusion matrix with matplotlib.
|
||||
|
||||
Args:
|
||||
@ -89,14 +101,15 @@ def plot_confusion_matrix(confusion_matrix,
|
||||
|
||||
num_classes = len(labels)
|
||||
fig, ax = plt.subplots(
|
||||
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=180)
|
||||
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300)
|
||||
cmap = plt.get_cmap(color_theme)
|
||||
im = ax.imshow(confusion_matrix, cmap=cmap)
|
||||
plt.colorbar(mappable=im, ax=ax)
|
||||
colorbar = plt.colorbar(mappable=im, ax=ax)
|
||||
colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小
|
||||
|
||||
title_font = {'weight': 'bold', 'size': 12}
|
||||
title_font = {'weight': 'bold', 'size': 20}
|
||||
ax.set_title(title, fontdict=title_font)
|
||||
label_font = {'size': 10}
|
||||
label_font = {'size': 40}
|
||||
plt.ylabel('Ground Truth Label', fontdict=label_font)
|
||||
plt.xlabel('Prediction Label', fontdict=label_font)
|
||||
|
||||
@ -116,8 +129,8 @@ def plot_confusion_matrix(confusion_matrix,
|
||||
# draw label
|
||||
ax.set_xticks(np.arange(num_classes))
|
||||
ax.set_yticks(np.arange(num_classes))
|
||||
ax.set_xticklabels(labels)
|
||||
ax.set_yticklabels(labels)
|
||||
ax.set_xticklabels(labels, fontsize=20)
|
||||
ax.set_yticklabels(labels, fontsize=20)
|
||||
|
||||
ax.tick_params(
|
||||
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
|
||||
@ -135,13 +148,14 @@ def plot_confusion_matrix(confusion_matrix,
|
||||
) if not np.isnan(confusion_matrix[i, j]) else -1),
|
||||
ha='center',
|
||||
va='center',
|
||||
color='w',
|
||||
size=7)
|
||||
color='k',
|
||||
size=20)
|
||||
|
||||
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
|
||||
|
||||
fig.tight_layout()
|
||||
if save_dir is not None:
|
||||
mkdir_or_exist(save_dir)
|
||||
plt.savefig(
|
||||
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
|
||||
if show:
|
||||
@ -155,7 +169,12 @@ def main():
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
results = load(args.prediction_path)
|
||||
results = []
|
||||
for img in sorted(os.listdir(args.prediction_path)):
|
||||
img = os.path.join(args.prediction_path, img)
|
||||
image = Image.open(img)
|
||||
image = np.copy(image)
|
||||
results.append(image)
|
||||
|
||||
assert isinstance(results, list)
|
||||
if isinstance(results[0], np.ndarray):
|
||||
@ -163,17 +182,11 @@ def main():
|
||||
else:
|
||||
raise TypeError('invalid type of prediction results')
|
||||
|
||||
if isinstance(cfg.data.test, dict):
|
||||
cfg.data.test.test_mode = True
|
||||
elif isinstance(cfg.data.test, list):
|
||||
for ds_cfg in cfg.data.test:
|
||||
ds_cfg.test_mode = True
|
||||
|
||||
dataset = build_dataset(cfg.data.test)
|
||||
dataset = DATASETS.build(cfg.test_dataloader.dataset)
|
||||
confusion_matrix = calculate_confusion_matrix(dataset, results)
|
||||
plot_confusion_matrix(
|
||||
confusion_matrix,
|
||||
dataset.CLASSES,
|
||||
dataset.METAINFO['classes'],
|
||||
save_dir=args.save_dir,
|
||||
show=args.show,
|
||||
title=args.title,
|
||||
|
Loading…
x
Reference in New Issue
Block a user