mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] Support Tversky Loss in dev-1.x branch (#2000)
This commit is contained in:
parent
bd1097ac02
commit
ee7f340dff
@ -5,11 +5,12 @@ from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
|
||||
from .dice_loss import DiceLoss
|
||||
from .focal_loss import FocalLoss
|
||||
from .lovasz_loss import LovaszLoss
|
||||
from .tversky_loss import TverskyLoss
|
||||
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
|
||||
|
||||
__all__ = [
|
||||
'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy',
|
||||
'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss',
|
||||
'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss',
|
||||
'FocalLoss'
|
||||
'FocalLoss', 'TverskyLoss'
|
||||
]
|
||||
|
137
mmseg/models/losses/tversky_loss.py
Normal file
137
mmseg/models/losses/tversky_loss.py
Normal file
@ -0,0 +1,137 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
"""Modified from
|
||||
https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py#L333
|
||||
(Apache-2.0 License)"""
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ..builder import LOSSES
|
||||
from .utils import get_class_weight, weighted_loss
|
||||
|
||||
|
||||
@weighted_loss
|
||||
def tversky_loss(pred,
|
||||
target,
|
||||
valid_mask,
|
||||
alpha=0.3,
|
||||
beta=0.7,
|
||||
smooth=1,
|
||||
class_weight=None,
|
||||
ignore_index=255):
|
||||
assert pred.shape[0] == target.shape[0]
|
||||
total_loss = 0
|
||||
num_classes = pred.shape[1]
|
||||
for i in range(num_classes):
|
||||
if i != ignore_index:
|
||||
tversky_loss = binary_tversky_loss(
|
||||
pred[:, i],
|
||||
target[..., i],
|
||||
valid_mask=valid_mask,
|
||||
alpha=alpha,
|
||||
beta=beta,
|
||||
smooth=smooth)
|
||||
if class_weight is not None:
|
||||
tversky_loss *= class_weight[i]
|
||||
total_loss += tversky_loss
|
||||
return total_loss / num_classes
|
||||
|
||||
|
||||
@weighted_loss
|
||||
def binary_tversky_loss(pred,
|
||||
target,
|
||||
valid_mask,
|
||||
alpha=0.3,
|
||||
beta=0.7,
|
||||
smooth=1):
|
||||
assert pred.shape[0] == target.shape[0]
|
||||
pred = pred.reshape(pred.shape[0], -1)
|
||||
target = target.reshape(target.shape[0], -1)
|
||||
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1)
|
||||
|
||||
TP = torch.sum(torch.mul(pred, target) * valid_mask, dim=1)
|
||||
FP = torch.sum(torch.mul(pred, 1 - target) * valid_mask, dim=1)
|
||||
FN = torch.sum(torch.mul(1 - pred, target) * valid_mask, dim=1)
|
||||
tversky = (TP + smooth) / (TP + alpha * FP + beta * FN + smooth)
|
||||
|
||||
return 1 - tversky
|
||||
|
||||
|
||||
@LOSSES.register_module()
|
||||
class TverskyLoss(nn.Module):
|
||||
"""TverskyLoss. This loss is proposed in `Tversky loss function for image
|
||||
segmentation using 3D fully convolutional deep networks.
|
||||
|
||||
<https://arxiv.org/abs/1706.05721>`_.
|
||||
Args:
|
||||
smooth (float): A float number to smooth loss, and avoid NaN error.
|
||||
Default: 1.
|
||||
class_weight (list[float] | str, optional): Weight of each class. If in
|
||||
str format, read them from a file. Defaults to None.
|
||||
loss_weight (float, optional): Weight of the loss. Default to 1.0.
|
||||
ignore_index (int | None): The label index to be ignored. Default: 255.
|
||||
alpha(float, in [0, 1]):
|
||||
The coefficient of false positives. Default: 0.3.
|
||||
beta (float, in [0, 1]):
|
||||
The coefficient of false negatives. Default: 0.7.
|
||||
Note: alpha + beta = 1.
|
||||
loss_name (str, optional): Name of the loss item. If you want this loss
|
||||
item to be included into the backward graph, `loss_` must be the
|
||||
prefix of the name. Defaults to 'loss_tversky'.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
smooth=1,
|
||||
class_weight=None,
|
||||
loss_weight=1.0,
|
||||
ignore_index=255,
|
||||
alpha=0.3,
|
||||
beta=0.7,
|
||||
loss_name='loss_tversky'):
|
||||
super(TverskyLoss, self).__init__()
|
||||
self.smooth = smooth
|
||||
self.class_weight = get_class_weight(class_weight)
|
||||
self.loss_weight = loss_weight
|
||||
self.ignore_index = ignore_index
|
||||
assert (alpha + beta == 1.0), 'Sum of alpha and beta but be 1.0!'
|
||||
self.alpha = alpha
|
||||
self.beta = beta
|
||||
self._loss_name = loss_name
|
||||
|
||||
def forward(self, pred, target, **kwargs):
|
||||
if self.class_weight is not None:
|
||||
class_weight = pred.new_tensor(self.class_weight)
|
||||
else:
|
||||
class_weight = None
|
||||
|
||||
pred = F.softmax(pred, dim=1)
|
||||
num_classes = pred.shape[1]
|
||||
one_hot_target = F.one_hot(
|
||||
torch.clamp(target.long(), 0, num_classes - 1),
|
||||
num_classes=num_classes)
|
||||
valid_mask = (target != self.ignore_index).long()
|
||||
|
||||
loss = self.loss_weight * tversky_loss(
|
||||
pred,
|
||||
one_hot_target,
|
||||
valid_mask=valid_mask,
|
||||
alpha=self.alpha,
|
||||
beta=self.beta,
|
||||
smooth=self.smooth,
|
||||
class_weight=class_weight,
|
||||
ignore_index=self.ignore_index)
|
||||
return loss
|
||||
|
||||
@property
|
||||
def loss_name(self):
|
||||
"""Loss Name.
|
||||
|
||||
This function must be implemented and will return the name of this
|
||||
loss function. This name will be used to combine different loss items
|
||||
by simple sum operation. In addition, if you want this loss item to be
|
||||
included into the backward graph, `loss_` must be the prefix of the
|
||||
name.
|
||||
Returns:
|
||||
str: The name of this loss item.
|
||||
"""
|
||||
return self._loss_name
|
76
tests/test_models/test_losses/test_tversky_loss.py
Normal file
76
tests/test_models/test_losses/test_tversky_loss.py
Normal file
@ -0,0 +1,76 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
|
||||
def test_tversky_lose():
|
||||
from mmseg.models import build_loss
|
||||
|
||||
# test alpha + beta != 1
|
||||
with pytest.raises(AssertionError):
|
||||
loss_cfg = dict(
|
||||
type='TverskyLoss',
|
||||
class_weight=[1.0, 2.0, 3.0],
|
||||
loss_weight=1.0,
|
||||
alpha=0.4,
|
||||
beta=0.7,
|
||||
loss_name='loss_tversky')
|
||||
tversky_loss = build_loss(loss_cfg)
|
||||
logits = torch.rand(8, 3, 4, 4)
|
||||
labels = (torch.rand(8, 4, 4) * 3).long()
|
||||
tversky_loss(logits, labels, ignore_index=1)
|
||||
|
||||
# test tversky loss
|
||||
loss_cfg = dict(
|
||||
type='TverskyLoss',
|
||||
class_weight=[1.0, 2.0, 3.0],
|
||||
loss_weight=1.0,
|
||||
ignore_index=1,
|
||||
loss_name='loss_tversky')
|
||||
tversky_loss = build_loss(loss_cfg)
|
||||
logits = torch.rand(8, 3, 4, 4)
|
||||
labels = (torch.rand(8, 4, 4) * 3).long()
|
||||
tversky_loss(logits, labels)
|
||||
|
||||
# test loss with class weights from file
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
tmp_file = tempfile.NamedTemporaryFile()
|
||||
|
||||
mmcv.dump([1.0, 2.0, 3.0], f'{tmp_file.name}.pkl', 'pkl') # from pkl file
|
||||
loss_cfg = dict(
|
||||
type='TverskyLoss',
|
||||
class_weight=f'{tmp_file.name}.pkl',
|
||||
loss_weight=1.0,
|
||||
ignore_index=1,
|
||||
loss_name='loss_tversky')
|
||||
tversky_loss = build_loss(loss_cfg)
|
||||
tversky_loss(logits, labels)
|
||||
|
||||
np.save(f'{tmp_file.name}.npy', np.array([1.0, 2.0, 3.0])) # from npy file
|
||||
loss_cfg = dict(
|
||||
type='TverskyLoss',
|
||||
class_weight=f'{tmp_file.name}.pkl',
|
||||
loss_weight=1.0,
|
||||
ignore_index=1,
|
||||
loss_name='loss_tversky')
|
||||
tversky_loss = build_loss(loss_cfg)
|
||||
tversky_loss(logits, labels)
|
||||
tmp_file.close()
|
||||
os.remove(f'{tmp_file.name}.pkl')
|
||||
os.remove(f'{tmp_file.name}.npy')
|
||||
|
||||
# test tversky loss has name `loss_tversky`
|
||||
loss_cfg = dict(
|
||||
type='TverskyLoss',
|
||||
smooth=2,
|
||||
loss_weight=1.0,
|
||||
ignore_index=1,
|
||||
alpha=0.3,
|
||||
beta=0.7,
|
||||
loss_name='loss_tversky')
|
||||
tversky_loss = build_loss(loss_cfg)
|
||||
assert tversky_loss.loss_name == 'loss_tversky'
|
Loading…
x
Reference in New Issue
Block a user