[Feature] Support Tversky Loss in dev-1.x branch (#2000)

This commit is contained in:
MengzhangLI 2022-08-31 10:58:21 +08:00 committed by GitHub
parent bd1097ac02
commit ee7f340dff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 215 additions and 1 deletions

View File

@ -5,11 +5,12 @@ from .cross_entropy_loss import (CrossEntropyLoss, binary_cross_entropy,
from .dice_loss import DiceLoss
from .focal_loss import FocalLoss
from .lovasz_loss import LovaszLoss
from .tversky_loss import TverskyLoss
from .utils import reduce_loss, weight_reduce_loss, weighted_loss
__all__ = [
'accuracy', 'Accuracy', 'cross_entropy', 'binary_cross_entropy',
'mask_cross_entropy', 'CrossEntropyLoss', 'reduce_loss',
'weight_reduce_loss', 'weighted_loss', 'LovaszLoss', 'DiceLoss',
'FocalLoss'
'FocalLoss', 'TverskyLoss'
]

View File

@ -0,0 +1,137 @@
# Copyright (c) OpenMMLab. All rights reserved.
"""Modified from
https://github.com/JunMa11/SegLoss/blob/master/losses_pytorch/dice_loss.py#L333
(Apache-2.0 License)"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..builder import LOSSES
from .utils import get_class_weight, weighted_loss
@weighted_loss
def tversky_loss(pred,
target,
valid_mask,
alpha=0.3,
beta=0.7,
smooth=1,
class_weight=None,
ignore_index=255):
assert pred.shape[0] == target.shape[0]
total_loss = 0
num_classes = pred.shape[1]
for i in range(num_classes):
if i != ignore_index:
tversky_loss = binary_tversky_loss(
pred[:, i],
target[..., i],
valid_mask=valid_mask,
alpha=alpha,
beta=beta,
smooth=smooth)
if class_weight is not None:
tversky_loss *= class_weight[i]
total_loss += tversky_loss
return total_loss / num_classes
@weighted_loss
def binary_tversky_loss(pred,
target,
valid_mask,
alpha=0.3,
beta=0.7,
smooth=1):
assert pred.shape[0] == target.shape[0]
pred = pred.reshape(pred.shape[0], -1)
target = target.reshape(target.shape[0], -1)
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1)
TP = torch.sum(torch.mul(pred, target) * valid_mask, dim=1)
FP = torch.sum(torch.mul(pred, 1 - target) * valid_mask, dim=1)
FN = torch.sum(torch.mul(1 - pred, target) * valid_mask, dim=1)
tversky = (TP + smooth) / (TP + alpha * FP + beta * FN + smooth)
return 1 - tversky
@LOSSES.register_module()
class TverskyLoss(nn.Module):
"""TverskyLoss. This loss is proposed in `Tversky loss function for image
segmentation using 3D fully convolutional deep networks.
<https://arxiv.org/abs/1706.05721>`_.
Args:
smooth (float): A float number to smooth loss, and avoid NaN error.
Default: 1.
class_weight (list[float] | str, optional): Weight of each class. If in
str format, read them from a file. Defaults to None.
loss_weight (float, optional): Weight of the loss. Default to 1.0.
ignore_index (int | None): The label index to be ignored. Default: 255.
alpha(float, in [0, 1]):
The coefficient of false positives. Default: 0.3.
beta (float, in [0, 1]):
The coefficient of false negatives. Default: 0.7.
Note: alpha + beta = 1.
loss_name (str, optional): Name of the loss item. If you want this loss
item to be included into the backward graph, `loss_` must be the
prefix of the name. Defaults to 'loss_tversky'.
"""
def __init__(self,
smooth=1,
class_weight=None,
loss_weight=1.0,
ignore_index=255,
alpha=0.3,
beta=0.7,
loss_name='loss_tversky'):
super(TverskyLoss, self).__init__()
self.smooth = smooth
self.class_weight = get_class_weight(class_weight)
self.loss_weight = loss_weight
self.ignore_index = ignore_index
assert (alpha + beta == 1.0), 'Sum of alpha and beta but be 1.0!'
self.alpha = alpha
self.beta = beta
self._loss_name = loss_name
def forward(self, pred, target, **kwargs):
if self.class_weight is not None:
class_weight = pred.new_tensor(self.class_weight)
else:
class_weight = None
pred = F.softmax(pred, dim=1)
num_classes = pred.shape[1]
one_hot_target = F.one_hot(
torch.clamp(target.long(), 0, num_classes - 1),
num_classes=num_classes)
valid_mask = (target != self.ignore_index).long()
loss = self.loss_weight * tversky_loss(
pred,
one_hot_target,
valid_mask=valid_mask,
alpha=self.alpha,
beta=self.beta,
smooth=self.smooth,
class_weight=class_weight,
ignore_index=self.ignore_index)
return loss
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name

View File

@ -0,0 +1,76 @@
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
def test_tversky_lose():
from mmseg.models import build_loss
# test alpha + beta != 1
with pytest.raises(AssertionError):
loss_cfg = dict(
type='TverskyLoss',
class_weight=[1.0, 2.0, 3.0],
loss_weight=1.0,
alpha=0.4,
beta=0.7,
loss_name='loss_tversky')
tversky_loss = build_loss(loss_cfg)
logits = torch.rand(8, 3, 4, 4)
labels = (torch.rand(8, 4, 4) * 3).long()
tversky_loss(logits, labels, ignore_index=1)
# test tversky loss
loss_cfg = dict(
type='TverskyLoss',
class_weight=[1.0, 2.0, 3.0],
loss_weight=1.0,
ignore_index=1,
loss_name='loss_tversky')
tversky_loss = build_loss(loss_cfg)
logits = torch.rand(8, 3, 4, 4)
labels = (torch.rand(8, 4, 4) * 3).long()
tversky_loss(logits, labels)
# test loss with class weights from file
import os
import tempfile
import mmcv
import numpy as np
tmp_file = tempfile.NamedTemporaryFile()
mmcv.dump([1.0, 2.0, 3.0], f'{tmp_file.name}.pkl', 'pkl') # from pkl file
loss_cfg = dict(
type='TverskyLoss',
class_weight=f'{tmp_file.name}.pkl',
loss_weight=1.0,
ignore_index=1,
loss_name='loss_tversky')
tversky_loss = build_loss(loss_cfg)
tversky_loss(logits, labels)
np.save(f'{tmp_file.name}.npy', np.array([1.0, 2.0, 3.0])) # from npy file
loss_cfg = dict(
type='TverskyLoss',
class_weight=f'{tmp_file.name}.pkl',
loss_weight=1.0,
ignore_index=1,
loss_name='loss_tversky')
tversky_loss = build_loss(loss_cfg)
tversky_loss(logits, labels)
tmp_file.close()
os.remove(f'{tmp_file.name}.pkl')
os.remove(f'{tmp_file.name}.npy')
# test tversky loss has name `loss_tversky`
loss_cfg = dict(
type='TverskyLoss',
smooth=2,
loss_weight=1.0,
ignore_index=1,
alpha=0.3,
beta=0.7,
loss_name='loss_tversky')
tversky_loss = build_loss(loss_cfg)
assert tversky_loss.loss_name == 'loss_tversky'