[Feature] add DPT head (#605)

* add DPT head

* [fix] fix init error

* use mmcv function

* delete code

* remove transpose clas

* support NLC output shape

* Delete post_process_layer.py

* add unittest and docstring

* rename variables

* fix project error and add unittest

* match dpt weights

* add configs

* fix vit pos_embed bug and dpt feature fusion bug

* match vit output

* fix gelu

* minor change

* update unitest

* fix configs error

* inference test

* remove auxilary

* use local pretrain

* update training results

* update yml

* update fps and memory test

* update doc

* update readme

* add yml

* update doc

* remove with_cp

* update config

* update docstring

* remove dpt-l

* add init_cfg and modify readme.md

* Update dpt_vit-b16.py

* zh-n README

* use constructor instead of build function

* prevent tensor being modified by ConvModule

* fix unittest

Co-authored-by: Junjun2016 <hejunjun@sjtu.edu.cn>
This commit is contained in:
谢昕辰 2021-08-30 16:53:05 +08:00 committed by GitHub
parent 0cf838f294
commit ef4b30038f
8 changed files with 482 additions and 1 deletions

View File

@ -0,0 +1,31 @@
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained='pretrain/vit-b16_p16_224-80ecf9dd.pth', # noqa
backbone=dict(
type='VisionTransformer',
img_size=224,
embed_dims=768,
num_layers=12,
num_heads=12,
out_indices=(2, 5, 8, 11),
final_norm=False,
with_cls_token=True,
output_cls_token=True),
decode_head=dict(
type='DPTHead',
in_channels=(768, 768, 768, 768),
channels=256,
embed_dims=768,
post_process_channels=[96, 192, 384, 768],
num_classes=150,
readout_type='project',
input_transform='multiple_select',
in_index=(0, 1, 2, 3),
norm_cfg=norm_cfg,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=None,
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole')) # yapf: disable

47
configs/dpt/README.md Normal file
View File

@ -0,0 +1,47 @@
# Vision Transformer for Dense Prediction
## Introduction
<!-- [ALGORITHM] -->
```latex
@article{dosoViTskiy2020,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={DosoViTskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={arXiv preprint arXiv:2010.11929},
year={2020}
}
@article{Ranftl2021,
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
title = {Vision Transformers for Dense Prediction},
journal = {ArXiv preprint},
year = {2021},
}
```
## Usage
To use other repositories' pre-trained models, it is necessary to convert keys.
We provide a script [`vit2mmseg.py`](../../tools/model_converters/vit2mmseg.py) in the tools directory to convert the key of models from [timm](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) to MMSegmentation style.
```shell
python tools/model_converters/vit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
```
E.g.
```shell
python tools/model_converters/vit2mmseg.py https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth pretrain/jx_vit_base_p16_224-80ecf9dd.pth
```
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
## Results and models
### ADE20K
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DPT | ViT-B | 512x512 | 160000 | 8.09 | 10.41 | 46.97 | 48.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth) &#124; [log](https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-20210809_172025.log.json) |

28
configs/dpt/dpt.yml Normal file
View File

@ -0,0 +1,28 @@
Collections:
- Metadata:
Training Data:
- ADE20K
Name: dpt
Models:
- Config: configs/dpt/dpt_vit-b16_512x512_160k_ade20k.py
In Collection: dpt
Metadata:
backbone: ViT-B
crop size: (512,512)
inference time (ms/im):
- backend: PyTorch
batch size: 1
hardware: V100
mode: FP32
resolution: (512,512)
value: 96.06
lr schd: 160000
memory (GB): 8.09
Name: dpt_vit-b16_512x512_160k_ade20k
Results:
Dataset: ADE20K
Metrics:
mIoU: 46.97
mIoU(ms+flip): 48.34
Task: Semantic Segmentation
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dpt/dpt_vit-b16_512x512_160k_ade20k/dpt_vit-b16_512x512_160k_ade20k-db31cf52.pth

View File

@ -0,0 +1,32 @@
_base_ = [
'../_base_/models/dpt_vit-b16.py', '../_base_/datasets/ade20k.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.00006,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(
custom_keys={
'pos_embed': dict(decay_mult=0.),
'cls_token': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2, workers_per_gpu=2)

View File

@ -6,6 +6,7 @@ from .cc_head import CCHead
from .da_head import DAHead
from .dm_head import DMHead
from .dnl_head import DNLHead
from .dpt_head import DPTHead
from .ema_head import EMAHead
from .enc_head import EncHead
from .fcn_head import FCNHead
@ -29,5 +30,5 @@ __all__ = [
'UPerHead', 'DepthwiseSeparableASPPHead', 'ANNHead', 'DAHead', 'OCRHead',
'EncHead', 'DepthwiseSeparableFCNHead', 'FPNHead', 'EMAHead', 'DNLHead',
'PointHead', 'APCHead', 'DMHead', 'LRASPPHead', 'SETRUPHead',
'SETRMLAHead', 'SegformerHead'
'SETRMLAHead', 'DPTHead', 'SETRMLAHead', 'SegformerHead'
]

View File

@ -0,0 +1,293 @@
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Linear, build_activation_layer
from mmcv.runner import BaseModule
from mmseg.ops import resize
from ..builder import HEADS
from .decode_head import BaseDecodeHead
class ReassembleBlocks(BaseModule):
"""ViTPostProcessBlock, process cls_token in ViT backbone output and
rearrange the feature vector to feature map.
Args:
in_channels (int): ViT feature channels. Default: 768.
out_channels (List): output channels of each stage.
Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels=768,
out_channels=[96, 192, 384, 768],
readout_type='ignore',
patch_size=16,
init_cfg=None):
super(ReassembleBlocks, self).__init__(init_cfg)
assert readout_type in ['ignore', 'add', 'project']
self.readout_type = readout_type
self.patch_size = patch_size
self.projects = nn.ModuleList([
ConvModule(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
act_cfg=None,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if self.readout_type == 'project':
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
Linear(2 * in_channels, in_channels),
build_activation_layer(dict(type='GELU'))))
def forward(self, inputs):
assert isinstance(inputs, list)
out = []
for i, x in enumerate(inputs):
assert len(x) == 2
x, cls_token = x[0], x[1]
feature_shape = x.shape
if self.readout_type == 'project':
x = x.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
x = x.permute(0, 2, 1).reshape(feature_shape)
elif self.readout_type == 'add':
x = x.flatten(2) + cls_token.unsqueeze(-1)
x = x.reshape(feature_shape)
else:
pass
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
return out
class PreActResidualConvUnit(BaseModule):
"""ResidualConvUnit, pre-activate residual unit.
Args:
in_channels (int): number of channels in the input feature map.
act_cfg (dict): dictionary to construct and config activation layer.
norm_cfg (dict): dictionary to construct and config norm layer.
stride (int): stride of the first block. Default: 1
dilation (int): dilation rate for convs layers. Default: 1.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
stride=1,
dilation=1,
init_cfg=None):
super(PreActResidualConvUnit, self).__init__(init_cfg)
self.conv1 = ConvModule(
in_channels,
in_channels,
3,
stride=stride,
padding=dilation,
dilation=dilation,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
self.conv2 = ConvModule(
in_channels,
in_channels,
3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
def forward(self, inputs):
inputs_ = inputs.clone()
x = self.conv1(inputs)
x = self.conv2(x)
return x + inputs_
class FeatureFusionBlock(BaseModule):
"""FeatureFusionBlock, merge feature map from different stages.
Args:
in_channels (int): Input channels.
act_cfg (dict): The activation config for ResidualConvUnit.
norm_cfg (dict): Config dict for normalization layer.
expand (bool): Whether expand the channels in post process block.
Default: False.
align_corners (bool): align_corner setting for bilinear upsample.
Default: True.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
expand=False,
align_corners=True,
init_cfg=None):
super(FeatureFusionBlock, self).__init__(init_cfg)
self.in_channels = in_channels
self.expand = expand
self.align_corners = align_corners
self.out_channels = in_channels
if self.expand:
self.out_channels = in_channels // 2
self.project = ConvModule(
self.in_channels,
self.out_channels,
kernel_size=1,
act_cfg=None,
bias=True)
self.res_conv_unit1 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
self.res_conv_unit2 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
def forward(self, *inputs):
x = inputs[0]
if len(inputs) == 2:
if x.shape != inputs[1].shape:
res = resize(
inputs[1],
size=(x.shape[2], x.shape[3]),
mode='bilinear',
align_corners=False)
else:
res = inputs[1]
x = x + self.res_conv_unit1(res)
x = self.res_conv_unit2(x)
x = resize(
x,
scale_factor=2,
mode='bilinear',
align_corners=self.align_corners)
x = self.project(x)
return x
@HEADS.register_module()
class DPTHead(BaseDecodeHead):
"""Vision Transformers for Dense Prediction.
This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
Args:
embed_dims (int): The embed dimension of the ViT backbone.
Default: 768.
post_process_channels (List): Out channels of post process conv
layers. Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
expand_channels (bool): Whether expand the channels in post process
block. Default: False.
act_cfg (dict): The activation config for residual conv unit.
Defalut dict(type='ReLU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
"""
def __init__(self,
embed_dims=768,
post_process_channels=[96, 192, 384, 768],
readout_type='ignore',
patch_size=16,
expand_channels=False,
act_cfg=dict(type='ReLU'),
norm_cfg=dict(type='BN'),
**kwargs):
super(DPTHead, self).__init__(**kwargs)
self.in_channels = self.in_channels
self.expand_channels = expand_channels
self.reassemble_blocks = ReassembleBlocks(embed_dims,
post_process_channels,
readout_type, patch_size)
self.post_process_channels = [
channel * math.pow(2, i) if expand_channels else channel
for i, channel in enumerate(post_process_channels)
]
self.convs = nn.ModuleList()
for channel in self.post_process_channels:
self.convs.append(
ConvModule(
channel,
self.channels,
kernel_size=3,
padding=1,
act_cfg=None,
bias=False))
self.fusion_blocks = nn.ModuleList()
for _ in range(len(self.convs)):
self.fusion_blocks.append(
FeatureFusionBlock(self.channels, act_cfg, norm_cfg))
self.fusion_blocks[0].res_conv_unit1 = None
self.project = ConvModule(
self.channels,
self.channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg)
self.num_fusion_blocks = len(self.fusion_blocks)
self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
self.num_post_process_channels = len(self.post_process_channels)
assert self.num_fusion_blocks == self.num_reassemble_blocks
assert self.num_reassemble_blocks == self.num_post_process_channels
def forward(self, inputs):
assert len(inputs) == self.num_reassemble_blocks
x = self._transform_inputs(inputs)
x = self.reassemble_blocks(x)
x = [self.convs[i](feature) for i, feature in enumerate(x)]
out = self.fusion_blocks[0](x[-1])
for i in range(1, len(self.fusion_blocks)):
out = self.fusion_blocks[i](out, x[-(i + 1)])
out = self.project(out)
out = self.cls_seg(out)
return out

View File

@ -8,6 +8,7 @@ Import:
- configs/deeplabv3plus/deeplabv3plus.yml
- configs/dmnet/dmnet.yml
- configs/dnlnet/dnlnet.yml
- configs/dpt/dpt.yml
- configs/emanet/emanet.yml
- configs/encnet/encnet.yml
- configs/fastscnn/fastscnn.yml

View File

@ -0,0 +1,48 @@
import pytest
import torch
from mmseg.models.decode_heads import DPTHead
def test_dpt_head():
with pytest.raises(AssertionError):
# input_transform must be 'multiple_select'
head = DPTHead(
in_channels=[768, 768, 768, 768],
channels=256,
num_classes=19,
in_index=[0, 1, 2, 3])
head = DPTHead(
in_channels=[768, 768, 768, 768],
channels=256,
num_classes=19,
in_index=[0, 1, 2, 3],
input_transform='multiple_select')
inputs = [[torch.randn(4, 768, 2, 2),
torch.randn(4, 768)] for _ in range(4)]
output = head(inputs)
assert output.shape == torch.Size((4, 19, 16, 16))
# test readout operation
head = DPTHead(
in_channels=[768, 768, 768, 768],
channels=256,
num_classes=19,
in_index=[0, 1, 2, 3],
input_transform='multiple_select',
readout_type='add')
output = head(inputs)
assert output.shape == torch.Size((4, 19, 16, 16))
head = DPTHead(
in_channels=[768, 768, 768, 768],
channels=256,
num_classes=19,
in_index=[0, 1, 2, 3],
input_transform='multiple_select',
readout_type='project')
output = head(inputs)
assert output.shape == torch.Size((4, 19, 16, 16))