mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Refactory] Merge BEiT and ConvNext 's LR decay optimizer constructors (#1438)
* move layer_decay_optimizer_constructor * fix * fix * merge test_core * fix * add DeprecationWarning * fix DeprecationWarning * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix * fix test * fix * fix * fix * fix * fix ut * fix * fix * Update tests/test_core/test_layer_decay_optimizer_constructor.py * fix * fix * fix * fix Co-authored-by: MeowZheng <meowzheng@outlook.com> Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
This commit is contained in:
parent
62c3a7dda9
commit
f16bb06092
@ -2,12 +2,10 @@
|
||||
from .builder import (OPTIMIZER_BUILDERS, build_optimizer,
|
||||
build_optimizer_constructor)
|
||||
from .evaluation import * # noqa: F401, F403
|
||||
from .layer_decay_optimizer_constructor import \
|
||||
LayerDecayOptimizerConstructor # noqa: F401
|
||||
from .optimizers import * # noqa: F401, F403
|
||||
from .seg import * # noqa: F401, F403
|
||||
from .utils import * # noqa: F401, F403
|
||||
|
||||
__all__ = [
|
||||
'LayerDecayOptimizerConstructor', 'OPTIMIZER_BUILDERS', 'build_optimizer',
|
||||
'build_optimizer_constructor'
|
||||
'OPTIMIZER_BUILDERS', 'build_optimizer', 'build_optimizer_constructor'
|
||||
]
|
||||
|
@ -1,87 +0,0 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmcv.runner import DefaultOptimizerConstructor, get_dist_info
|
||||
|
||||
from mmseg.utils import get_root_logger
|
||||
from .builder import OPTIMIZER_BUILDERS
|
||||
|
||||
|
||||
def get_num_layer_for_vit(var_name, num_max_layer):
|
||||
"""Get the layer id to set the different learning rates.
|
||||
|
||||
Args:
|
||||
var_name (str): The key of the model.
|
||||
num_max_layer (int): Maximum number of backbone layers.
|
||||
Returns:
|
||||
layer id (int): Returns the layer id of the key.
|
||||
"""
|
||||
|
||||
if var_name in ('backbone.cls_token', 'backbone.mask_token',
|
||||
'backbone.pos_embed'):
|
||||
return 0
|
||||
elif var_name.startswith('backbone.patch_embed'):
|
||||
return 0
|
||||
elif var_name.startswith('backbone.layers'):
|
||||
layer_id = int(var_name.split('.')[2])
|
||||
return layer_id + 1
|
||||
else:
|
||||
return num_max_layer - 1
|
||||
|
||||
|
||||
@OPTIMIZER_BUILDERS.register_module()
|
||||
class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor):
|
||||
"""Different learning rates are set for different layers of backbone."""
|
||||
|
||||
def add_params(self, params, module):
|
||||
"""Add all parameters of module to the params list.
|
||||
|
||||
The parameters of the given module will be added to the list of param
|
||||
groups, with specific rules defined by paramwise_cfg.
|
||||
Args:
|
||||
params (list[dict]): A list of param groups, it will be modified
|
||||
in place.
|
||||
module (nn.Module): The module to be added.
|
||||
"""
|
||||
parameter_groups = {}
|
||||
logger = get_root_logger()
|
||||
logger.info(self.paramwise_cfg)
|
||||
num_layers = self.paramwise_cfg.get('num_layers') + 2
|
||||
layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate')
|
||||
logger.info(f'Build LayerDecayOptimizerConstructor '
|
||||
f'{layer_decay_rate} - {num_layers}')
|
||||
weight_decay = self.base_wd
|
||||
for name, param in module.named_parameters():
|
||||
if not param.requires_grad:
|
||||
continue # frozen weights
|
||||
if len(param.shape) == 1 or name.endswith('.bias') or name in (
|
||||
'pos_embed', 'cls_token'):
|
||||
group_name = 'no_decay'
|
||||
this_weight_decay = 0.
|
||||
else:
|
||||
group_name = 'decay'
|
||||
this_weight_decay = weight_decay
|
||||
layer_id = get_num_layer_for_vit(name, num_layers)
|
||||
group_name = f'layer_{layer_id}_{group_name}'
|
||||
if group_name not in parameter_groups:
|
||||
scale = layer_decay_rate**(num_layers - layer_id - 1)
|
||||
parameter_groups[group_name] = {
|
||||
'weight_decay': this_weight_decay,
|
||||
'params': [],
|
||||
'param_names': [],
|
||||
'lr_scale': scale,
|
||||
'group_name': group_name,
|
||||
'lr': scale * self.base_lr
|
||||
}
|
||||
parameter_groups[group_name]['params'].append(param)
|
||||
parameter_groups[group_name]['param_names'].append(name)
|
||||
rank, _ = get_dist_info()
|
||||
if rank == 0:
|
||||
to_display = {}
|
||||
for key in parameter_groups:
|
||||
to_display[key] = {
|
||||
'param_names': parameter_groups[key]['param_names'],
|
||||
'lr_scale': parameter_groups[key]['lr_scale'],
|
||||
'lr': parameter_groups[key]['lr'],
|
||||
'weight_decay': parameter_groups[key]['weight_decay']
|
||||
}
|
||||
logger.info(f'Param groups ={to_display}')
|
||||
params.extend(parameter_groups.values())
|
7
mmseg/core/optimizers/__init__.py
Normal file
7
mmseg/core/optimizers/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .layer_decay_optimizer_constructor import (
|
||||
LayerDecayOptimizerConstructor, LearningRateDecayOptimizerConstructor)
|
||||
|
||||
__all__ = [
|
||||
'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor'
|
||||
]
|
@ -1,5 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import json
|
||||
import warnings
|
||||
|
||||
from mmcv.runner import DefaultOptimizerConstructor, get_dist_info
|
||||
|
||||
@ -7,13 +8,13 @@ from mmseg.utils import get_root_logger
|
||||
from ..builder import OPTIMIZER_BUILDERS
|
||||
|
||||
|
||||
def get_num_layer_layer_wise(var_name, num_max_layer=12):
|
||||
def get_layer_id_for_convnext(var_name, max_layer_id):
|
||||
"""Get the layer id to set the different learning rates in ``layer_wise``
|
||||
decay_type.
|
||||
|
||||
Args:
|
||||
var_name (str): The key of the model.
|
||||
num_max_layer (int): Maximum number of backbone layers.
|
||||
max_layer_id (int): Maximum number of backbone layers.
|
||||
|
||||
Returns:
|
||||
int: The id number corresponding to different learning rate in
|
||||
@ -32,7 +33,7 @@ def get_num_layer_layer_wise(var_name, num_max_layer=12):
|
||||
elif stage_id == 2:
|
||||
layer_id = 3
|
||||
elif stage_id == 3:
|
||||
layer_id = num_max_layer
|
||||
layer_id = max_layer_id
|
||||
return layer_id
|
||||
elif var_name.startswith('backbone.stages'):
|
||||
stage_id = int(var_name.split('.')[2])
|
||||
@ -44,19 +45,20 @@ def get_num_layer_layer_wise(var_name, num_max_layer=12):
|
||||
elif stage_id == 2:
|
||||
layer_id = 3 + block_id // 3
|
||||
elif stage_id == 3:
|
||||
layer_id = num_max_layer
|
||||
layer_id = max_layer_id
|
||||
return layer_id
|
||||
else:
|
||||
return num_max_layer + 1
|
||||
return max_layer_id + 1
|
||||
|
||||
|
||||
def get_num_layer_stage_wise(var_name, num_max_layer):
|
||||
"""Get the layer id to set the different learning rates in ``stage_wise``
|
||||
def get_stage_id_for_convnext(var_name, max_stage_id):
|
||||
"""Get the stage id to set the different learning rates in ``stage_wise``
|
||||
decay_type.
|
||||
|
||||
Args:
|
||||
var_name (str): The key of the model.
|
||||
num_max_layer (int): Maximum number of backbone layers.
|
||||
max_stage_id (int): Maximum number of backbone layers.
|
||||
|
||||
Returns:
|
||||
int: The id number corresponding to different learning rate in
|
||||
``LearningRateDecayOptimizerConstructor``.
|
||||
@ -71,14 +73,41 @@ def get_num_layer_stage_wise(var_name, num_max_layer):
|
||||
stage_id = int(var_name.split('.')[2])
|
||||
return stage_id + 1
|
||||
else:
|
||||
return num_max_layer - 1
|
||||
return max_stage_id - 1
|
||||
|
||||
|
||||
def get_layer_id_for_vit(var_name, max_layer_id):
|
||||
"""Get the layer id to set the different learning rates.
|
||||
|
||||
Args:
|
||||
var_name (str): The key of the model.
|
||||
num_max_layer (int): Maximum number of backbone layers.
|
||||
|
||||
Returns:
|
||||
int: Returns the layer id of the key.
|
||||
"""
|
||||
|
||||
if var_name in ('backbone.cls_token', 'backbone.mask_token',
|
||||
'backbone.pos_embed'):
|
||||
return 0
|
||||
elif var_name.startswith('backbone.patch_embed'):
|
||||
return 0
|
||||
elif var_name.startswith('backbone.layers'):
|
||||
layer_id = int(var_name.split('.')[2])
|
||||
return layer_id + 1
|
||||
else:
|
||||
return max_layer_id - 1
|
||||
|
||||
|
||||
@OPTIMIZER_BUILDERS.register_module()
|
||||
class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
|
||||
"""Different learning rates are set for different layers of backbone."""
|
||||
"""Different learning rates are set for different layers of backbone.
|
||||
|
||||
def add_params(self, params, module):
|
||||
Note: Currently, this optimizer constructor is built for ConvNeXt
|
||||
and BEiT.
|
||||
"""
|
||||
|
||||
def add_params(self, params, module, **kwargs):
|
||||
"""Add all parameters of module to the params list.
|
||||
|
||||
The parameters of the given module will be added to the list of param
|
||||
@ -99,7 +128,6 @@ class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
|
||||
logger.info('Build LearningRateDecayOptimizerConstructor '
|
||||
f'{decay_type} {decay_rate} - {num_layers}')
|
||||
weight_decay = self.base_wd
|
||||
|
||||
for name, param in module.named_parameters():
|
||||
if not param.requires_grad:
|
||||
continue # frozen weights
|
||||
@ -110,14 +138,22 @@ class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
|
||||
else:
|
||||
group_name = 'decay'
|
||||
this_weight_decay = weight_decay
|
||||
|
||||
if decay_type == 'layer_wise':
|
||||
layer_id = get_num_layer_layer_wise(
|
||||
if 'layer_wise' in decay_type:
|
||||
if 'ConvNeXt' in module.backbone.__class__.__name__:
|
||||
layer_id = get_layer_id_for_convnext(
|
||||
name, self.paramwise_cfg.get('num_layers'))
|
||||
logger.info(f'set param {name} as id {layer_id}')
|
||||
elif decay_type == 'stage_wise':
|
||||
layer_id = get_num_layer_stage_wise(name, num_layers)
|
||||
elif 'BEiT' in module.backbone.__class__.__name__:
|
||||
layer_id = get_layer_id_for_vit(name, num_layers)
|
||||
logger.info(f'set param {name} as id {layer_id}')
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
elif decay_type == 'stage_wise':
|
||||
if 'ConvNeXt' in module.backbone.__class__.__name__:
|
||||
layer_id = get_stage_id_for_convnext(name, num_layers)
|
||||
logger.info(f'set param {name} as id {layer_id}')
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
group_name = f'layer_{layer_id}_{group_name}'
|
||||
|
||||
if group_name not in parameter_groups:
|
||||
@ -146,3 +182,26 @@ class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor):
|
||||
}
|
||||
logger.info(f'Param groups = {json.dumps(to_display, indent=2)}')
|
||||
params.extend(parameter_groups.values())
|
||||
|
||||
|
||||
@OPTIMIZER_BUILDERS.register_module()
|
||||
class LayerDecayOptimizerConstructor(LearningRateDecayOptimizerConstructor):
|
||||
"""Different learning rates are set for different layers of backbone.
|
||||
|
||||
Note: Currently, this optimizer constructor is built for BEiT,
|
||||
and it will be deprecated.
|
||||
Please use ``LearningRateDecayOptimizerConstructor`` instead.
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer_cfg, paramwise_cfg):
|
||||
warnings.warn('DeprecationWarning: Original '
|
||||
'LayerDecayOptimizerConstructor of BEiT '
|
||||
'will be deprecated. Please use '
|
||||
'LearningRateDecayOptimizerConstructor instead, '
|
||||
'and set decay_type = layer_wise_vit in paramwise_cfg.')
|
||||
paramwise_cfg.update({'decay_type': 'layer_wise_vit'})
|
||||
warnings.warn('DeprecationWarning: Layer_decay_rate will '
|
||||
'be deleted, please use decay_rate instead.')
|
||||
paramwise_cfg['decay_rate'] = paramwise_cfg.pop('layer_decay_rate')
|
||||
super(LayerDecayOptimizerConstructor,
|
||||
self).__init__(optimizer_cfg, paramwise_cfg)
|
@ -1,10 +1,5 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .dist_util import check_dist_init, sync_random_seed
|
||||
from .layer_decay_optimizer_constructor import \
|
||||
LearningRateDecayOptimizerConstructor
|
||||
from .misc import add_prefix
|
||||
|
||||
__all__ = [
|
||||
'add_prefix', 'LearningRateDecayOptimizerConstructor', 'check_dist_init',
|
||||
'sync_random_seed'
|
||||
]
|
||||
__all__ = ['add_prefix', 'check_dist_init', 'sync_random_seed']
|
||||
|
@ -1,11 +1,94 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmcv.cnn import ConvModule
|
||||
|
||||
from mmseg.core.layer_decay_optimizer_constructor import \
|
||||
LayerDecayOptimizerConstructor
|
||||
from mmseg.core.optimizers.layer_decay_optimizer_constructor import (
|
||||
LayerDecayOptimizerConstructor, LearningRateDecayOptimizerConstructor)
|
||||
|
||||
layer_wise_gt_lst = [{
|
||||
base_lr = 1
|
||||
decay_rate = 2
|
||||
base_wd = 0.05
|
||||
weight_decay = 0.05
|
||||
|
||||
expected_stage_wise_lr_wd_convnext = [{
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 1
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 8
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 8
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 1
|
||||
}]
|
||||
|
||||
expected_layer_wise_lr_wd_convnext = [{
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 1
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 2
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 2
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 1
|
||||
}]
|
||||
|
||||
expected_layer_wise_wd_lr_beit = [{
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
@ -26,45 +109,143 @@ layer_wise_gt_lst = [{
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 2
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 1
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 1
|
||||
}]
|
||||
|
||||
|
||||
class BEiTExampleModel(nn.Module):
|
||||
class ToyConvNeXt(nn.Module):
|
||||
|
||||
def __init__(self, depth):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.backbone = nn.ModuleList()
|
||||
self.stages = nn.ModuleList()
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(ConvModule(3, 4, kernel_size=1, bias=True))
|
||||
self.stages.append(stage)
|
||||
self.norm0 = nn.BatchNorm2d(2)
|
||||
|
||||
# add some variables to meet unit test coverate rate
|
||||
self.backbone.cls_token = nn.Parameter(torch.ones(1))
|
||||
self.backbone.patch_embed = nn.Parameter(torch.ones(1))
|
||||
self.backbone.layers = nn.ModuleList()
|
||||
for _ in range(depth):
|
||||
self.cls_token = nn.Parameter(torch.ones(1))
|
||||
self.mask_token = nn.Parameter(torch.ones(1))
|
||||
self.pos_embed = nn.Parameter(torch.ones(1))
|
||||
self.stem_norm = nn.Parameter(torch.ones(1))
|
||||
self.downsample_norm0 = nn.BatchNorm2d(2)
|
||||
self.downsample_norm1 = nn.BatchNorm2d(2)
|
||||
self.downsample_norm2 = nn.BatchNorm2d(2)
|
||||
self.lin = nn.Parameter(torch.ones(1))
|
||||
self.lin.requires_grad = False
|
||||
self.downsample_layers = nn.ModuleList()
|
||||
for _ in range(4):
|
||||
stage = nn.Sequential(nn.Conv2d(3, 4, kernel_size=1, bias=True))
|
||||
self.downsample_layers.append(stage)
|
||||
|
||||
|
||||
class ToyBEiT(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# add some variables to meet unit test coverate rate
|
||||
self.cls_token = nn.Parameter(torch.ones(1))
|
||||
self.patch_embed = nn.Parameter(torch.ones(1))
|
||||
self.layers = nn.ModuleList()
|
||||
for _ in range(3):
|
||||
layer = nn.Conv2d(3, 3, 1)
|
||||
self.backbone.layers.append(layer)
|
||||
self.layers.append(layer)
|
||||
|
||||
|
||||
def check_beit_adamw_optimizer(optimizer, gt_lst):
|
||||
class ToySegmentor(nn.Module):
|
||||
|
||||
def __init__(self, backbone):
|
||||
super().__init__()
|
||||
self.backbone = backbone
|
||||
self.decode_head = nn.Conv2d(2, 2, kernel_size=1, groups=2)
|
||||
|
||||
|
||||
class PseudoDataParallel(nn.Module):
|
||||
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.module = model
|
||||
|
||||
|
||||
class ToyViT(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
|
||||
def check_optimizer_lr_wd(optimizer, gt_lr_wd):
|
||||
assert isinstance(optimizer, torch.optim.AdamW)
|
||||
assert optimizer.defaults['lr'] == 1
|
||||
assert optimizer.defaults['weight_decay'] == 0.05
|
||||
assert optimizer.defaults['lr'] == base_lr
|
||||
assert optimizer.defaults['weight_decay'] == base_wd
|
||||
param_groups = optimizer.param_groups
|
||||
# 1 layer (cls_token and patch_embed) + 3 layers * 2 (w, b) = 7 layers
|
||||
assert len(param_groups) == 7
|
||||
print(param_groups)
|
||||
assert len(param_groups) == len(gt_lr_wd)
|
||||
for i, param_dict in enumerate(param_groups):
|
||||
assert param_dict['weight_decay'] == gt_lst[i]['weight_decay']
|
||||
assert param_dict['lr_scale'] == gt_lst[i]['lr_scale']
|
||||
assert param_dict['weight_decay'] == gt_lr_wd[i]['weight_decay']
|
||||
assert param_dict['lr_scale'] == gt_lr_wd[i]['lr_scale']
|
||||
assert param_dict['lr_scale'] == param_dict['lr']
|
||||
|
||||
|
||||
def test_learning_rate_decay_optimizer_constructor():
|
||||
|
||||
# Test lr wd for ConvNeXT
|
||||
backbone = ToyConvNeXt()
|
||||
model = PseudoDataParallel(ToySegmentor(backbone))
|
||||
optimizer_cfg = dict(
|
||||
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05)
|
||||
# stagewise decay
|
||||
stagewise_paramwise_cfg = dict(
|
||||
decay_rate=decay_rate, decay_type='stage_wise', num_layers=6)
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, stagewise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_optimizer_lr_wd(optimizer, expected_stage_wise_lr_wd_convnext)
|
||||
# layerwise decay
|
||||
layerwise_paramwise_cfg = dict(
|
||||
decay_rate=decay_rate, decay_type='layer_wise', num_layers=6)
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, layerwise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_optimizer_lr_wd(optimizer, expected_layer_wise_lr_wd_convnext)
|
||||
|
||||
# Test lr wd for BEiT
|
||||
backbone = ToyBEiT()
|
||||
model = PseudoDataParallel(ToySegmentor(backbone))
|
||||
|
||||
layerwise_paramwise_cfg = dict(
|
||||
decay_rate=decay_rate, decay_type='layer_wise', num_layers=3)
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, layerwise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_optimizer_lr_wd(optimizer, expected_layer_wise_wd_lr_beit)
|
||||
|
||||
# Test invalidation of lr wd for Vit
|
||||
backbone = ToyViT()
|
||||
model = PseudoDataParallel(ToySegmentor(backbone))
|
||||
with pytest.raises(NotImplementedError):
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, layerwise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
with pytest.raises(NotImplementedError):
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, stagewise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
|
||||
|
||||
def test_beit_layer_decay_optimizer_constructor():
|
||||
|
||||
# paramwise_cfg with ConvNeXtExampleModel
|
||||
model = BEiTExampleModel(depth=3)
|
||||
# paramwise_cfg with BEiTExampleModel
|
||||
backbone = ToyBEiT()
|
||||
model = PseudoDataParallel(ToySegmentor(backbone))
|
||||
optimizer_cfg = dict(
|
||||
type='AdamW', lr=1, betas=(0.9, 0.999), weight_decay=0.05)
|
||||
paramwise_cfg = dict(num_layers=3, layer_decay_rate=2)
|
||||
paramwise_cfg = dict(layer_decay_rate=2, num_layers=3)
|
||||
optim_constructor = LayerDecayOptimizerConstructor(optimizer_cfg,
|
||||
paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_beit_adamw_optimizer(optimizer, layer_wise_gt_lst)
|
||||
check_optimizer_lr_wd(optimizer, expected_layer_wise_wd_lr_beit)
|
||||
|
@ -1,161 +0,0 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmcv.cnn import ConvModule
|
||||
|
||||
from mmseg.core.utils.layer_decay_optimizer_constructor import \
|
||||
LearningRateDecayOptimizerConstructor
|
||||
|
||||
base_lr = 1
|
||||
decay_rate = 2
|
||||
base_wd = 0.05
|
||||
weight_decay = 0.05
|
||||
|
||||
stage_wise_gt_lst = [{
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 1
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 8
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 8
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 1
|
||||
}]
|
||||
|
||||
layer_wise_gt_lst = [{
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 1
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 64
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 32
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 16
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 2
|
||||
}, {
|
||||
'weight_decay': 0.0,
|
||||
'lr_scale': 2
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 128
|
||||
}, {
|
||||
'weight_decay': 0.05,
|
||||
'lr_scale': 1
|
||||
}]
|
||||
|
||||
|
||||
class ConvNeXtExampleModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.backbone = nn.ModuleList()
|
||||
self.backbone.stages = nn.ModuleList()
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(ConvModule(3, 4, kernel_size=1, bias=True))
|
||||
self.backbone.stages.append(stage)
|
||||
self.backbone.norm0 = nn.BatchNorm2d(2)
|
||||
|
||||
# add some variables to meet unit test coverate rate
|
||||
self.backbone.cls_token = nn.Parameter(torch.ones(1))
|
||||
self.backbone.mask_token = nn.Parameter(torch.ones(1))
|
||||
self.backbone.pos_embed = nn.Parameter(torch.ones(1))
|
||||
self.backbone.stem_norm = nn.Parameter(torch.ones(1))
|
||||
self.backbone.downsample_norm0 = nn.BatchNorm2d(2)
|
||||
self.backbone.downsample_norm1 = nn.BatchNorm2d(2)
|
||||
self.backbone.downsample_norm2 = nn.BatchNorm2d(2)
|
||||
self.backbone.lin = nn.Parameter(torch.ones(1))
|
||||
self.backbone.lin.requires_grad = False
|
||||
|
||||
self.backbone.downsample_layers = nn.ModuleList()
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(nn.Conv2d(3, 4, kernel_size=1, bias=True))
|
||||
self.backbone.downsample_layers.append(stage)
|
||||
|
||||
self.decode_head = nn.Conv2d(2, 2, kernel_size=1, groups=2)
|
||||
|
||||
|
||||
class PseudoDataParallel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.module = ConvNeXtExampleModel()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
def check_convnext_adamw_optimizer(optimizer, gt_lst):
|
||||
assert isinstance(optimizer, torch.optim.AdamW)
|
||||
assert optimizer.defaults['lr'] == base_lr
|
||||
assert optimizer.defaults['weight_decay'] == base_wd
|
||||
param_groups = optimizer.param_groups
|
||||
assert len(param_groups) == 12
|
||||
for i, param_dict in enumerate(param_groups):
|
||||
assert param_dict['weight_decay'] == gt_lst[i]['weight_decay']
|
||||
assert param_dict['lr_scale'] == gt_lst[i]['lr_scale']
|
||||
assert param_dict['lr_scale'] == param_dict['lr']
|
||||
|
||||
|
||||
def test_convnext_learning_rate_decay_optimizer_constructor():
|
||||
|
||||
# paramwise_cfg with ConvNeXtExampleModel
|
||||
model = ConvNeXtExampleModel()
|
||||
optimizer_cfg = dict(
|
||||
type='AdamW', lr=base_lr, betas=(0.9, 0.999), weight_decay=0.05)
|
||||
stagewise_paramwise_cfg = dict(
|
||||
decay_rate=decay_rate, decay_type='stage_wise', num_layers=6)
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, stagewise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_convnext_adamw_optimizer(optimizer, stage_wise_gt_lst)
|
||||
|
||||
layerwise_paramwise_cfg = dict(
|
||||
decay_rate=decay_rate, decay_type='layer_wise', num_layers=6)
|
||||
optim_constructor = LearningRateDecayOptimizerConstructor(
|
||||
optimizer_cfg, layerwise_paramwise_cfg)
|
||||
optimizer = optim_constructor(model)
|
||||
check_convnext_adamw_optimizer(optimizer, layer_wise_gt_lst)
|
Loading…
x
Reference in New Issue
Block a user