mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Merge pull request #1 from jinwonkim93/face_occlusion
add config file for occlusion face
This commit is contained in:
commit
f4022fbd0d
82
configs/_base_/datasets/occlude_face.py
Normal file
82
configs/_base_/datasets/occlude_face.py
Normal file
@ -0,0 +1,82 @@
|
||||
dataset_type = 'FaceOccluded'
|
||||
data_root = 'data/occlusion-aware-dataset'
|
||||
crop_size = (512, 512)
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations'),
|
||||
dict(type='Resize', img_scale=(512, 512)),
|
||||
dict(type='RandomFlip', prob=0.5),
|
||||
dict(type='RandomRotate', degree=(-30, 30), prob=0.5),
|
||||
dict(type='PhotoMetricDistortion'),
|
||||
dict(
|
||||
type='Normalize',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
to_rgb=True),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(
|
||||
type='MultiScaleFlipAug',
|
||||
img_scale=(512, 512),
|
||||
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||
flip=True,
|
||||
transforms=[
|
||||
dict(type='Resize', keep_ratio=True),
|
||||
dict(type='ResizeToMultiple', size_divisor=32),
|
||||
dict(type='RandomFlip'),
|
||||
dict(
|
||||
type='Normalize',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
to_rgb=True),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(type='Collect', keys=['img'])
|
||||
])
|
||||
]
|
||||
|
||||
dataset_train_A = dict(
|
||||
type='FaceOccluded',
|
||||
data_root=data_root,
|
||||
img_dir='CelebAMask-HQ-original/image',
|
||||
ann_dir='CelebAMask-HQ-original/mask_edited',
|
||||
split='CelebAMask-HQ-original/split/train_ori.txt',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
dataset_train_B = dict(
|
||||
type='FaceOccluded',
|
||||
data_root=data_root,
|
||||
img_dir='NatOcc-SOT/image',
|
||||
ann_dir='NatOcc-SOT/mask',
|
||||
split='NatOcc-SOT/split/train.txt',
|
||||
pipeline=train_pipeline)
|
||||
|
||||
|
||||
dataset_valid = dict(
|
||||
type='FaceOccluded',
|
||||
data_root=data_root,
|
||||
img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image',
|
||||
ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask',
|
||||
split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/split/val.txt',
|
||||
pipeline=test_pipeline)
|
||||
|
||||
dataset_test = dict(
|
||||
type='FaceOccluded',
|
||||
data_root=data_root,
|
||||
img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image',
|
||||
ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask',
|
||||
split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/test.txt',
|
||||
pipeline=test_pipeline)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=2,
|
||||
workers_per_gpu=2,
|
||||
train=[
|
||||
dataset_train_A,dataset_train_B,
|
||||
],
|
||||
val= dataset_valid,
|
||||
test=dataset_test)
|
@ -0,0 +1,66 @@
|
||||
# +
|
||||
_base_ = '../_base_/dataset/occlude_face.py'
|
||||
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||
model = dict(
|
||||
type='EncoderDecoder',
|
||||
pretrained='open-mmlab://resnet101_v1c',
|
||||
backbone=dict(
|
||||
type='ResNetV1c',
|
||||
depth=101,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
dilations=(1, 1, 2, 4),
|
||||
strides=(1, 2, 1, 1),
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
norm_eval=False,
|
||||
style='pytorch',
|
||||
contract_dilation=True),
|
||||
decode_head=dict(
|
||||
type='DepthwiseSeparableASPPHead',
|
||||
in_channels=2048,
|
||||
in_index=3,
|
||||
channels=512,
|
||||
dilations=(1, 12, 24, 36),
|
||||
c1_in_channels=256,
|
||||
c1_channels=48,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=2,
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
||||
auxiliary_head=dict(
|
||||
type='FCNHead',
|
||||
in_channels=1024,
|
||||
in_index=2,
|
||||
channels=256,
|
||||
num_convs=1,
|
||||
concat_input=False,
|
||||
dropout_ratio=0.1,
|
||||
num_classes=2,
|
||||
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||
align_corners=False,
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||
train_cfg=dict(),
|
||||
test_cfg=dict(mode='whole'))
|
||||
log_config = dict(
|
||||
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
||||
dist_params = dict(backend='nccl')
|
||||
log_level = 'INFO'
|
||||
load_from = None
|
||||
resume_from = None
|
||||
workflow = [('train', 1)]
|
||||
cudnn_benchmark = True
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optimizer_config = dict()
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
|
||||
runner = dict(type='IterBasedRunner', max_iters=30000)
|
||||
checkpoint_config = dict(by_epoch=False, interval=400)
|
||||
evaluation = dict(
|
||||
interval=400, metric=['mIoU', 'mDice', 'mFscore'], pre_eval=True)
|
||||
|
||||
work_dir = './work_dirs/deeplabv3plus_r101_512x512_C-CM+C-WO-NatOcc-SOT'
|
||||
gpu_ids = range(0, 2)
|
||||
auto_resume = False
|
Loading…
x
Reference in New Issue
Block a user