mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
Merge pull request #1 from jinwonkim93/face_occlusion
add config file for occlusion face
This commit is contained in:
commit
f4022fbd0d
82
configs/_base_/datasets/occlude_face.py
Normal file
82
configs/_base_/datasets/occlude_face.py
Normal file
@ -0,0 +1,82 @@
|
|||||||
|
dataset_type = 'FaceOccluded'
|
||||||
|
data_root = 'data/occlusion-aware-dataset'
|
||||||
|
crop_size = (512, 512)
|
||||||
|
img_norm_cfg = dict(
|
||||||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||||
|
train_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(type='LoadAnnotations'),
|
||||||
|
dict(type='Resize', img_scale=(512, 512)),
|
||||||
|
dict(type='RandomFlip', prob=0.5),
|
||||||
|
dict(type='RandomRotate', degree=(-30, 30), prob=0.5),
|
||||||
|
dict(type='PhotoMetricDistortion'),
|
||||||
|
dict(
|
||||||
|
type='Normalize',
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True),
|
||||||
|
dict(type='DefaultFormatBundle'),
|
||||||
|
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
||||||
|
]
|
||||||
|
test_pipeline = [
|
||||||
|
dict(type='LoadImageFromFile'),
|
||||||
|
dict(
|
||||||
|
type='MultiScaleFlipAug',
|
||||||
|
img_scale=(512, 512),
|
||||||
|
img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
||||||
|
flip=True,
|
||||||
|
transforms=[
|
||||||
|
dict(type='Resize', keep_ratio=True),
|
||||||
|
dict(type='ResizeToMultiple', size_divisor=32),
|
||||||
|
dict(type='RandomFlip'),
|
||||||
|
dict(
|
||||||
|
type='Normalize',
|
||||||
|
mean=[123.675, 116.28, 103.53],
|
||||||
|
std=[58.395, 57.12, 57.375],
|
||||||
|
to_rgb=True),
|
||||||
|
dict(type='ImageToTensor', keys=['img']),
|
||||||
|
dict(type='Collect', keys=['img'])
|
||||||
|
])
|
||||||
|
]
|
||||||
|
|
||||||
|
dataset_train_A = dict(
|
||||||
|
type='FaceOccluded',
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='CelebAMask-HQ-original/image',
|
||||||
|
ann_dir='CelebAMask-HQ-original/mask_edited',
|
||||||
|
split='CelebAMask-HQ-original/split/train_ori.txt',
|
||||||
|
pipeline=train_pipeline)
|
||||||
|
|
||||||
|
dataset_train_B = dict(
|
||||||
|
type='FaceOccluded',
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='NatOcc-SOT/image',
|
||||||
|
ann_dir='NatOcc-SOT/mask',
|
||||||
|
split='NatOcc-SOT/split/train.txt',
|
||||||
|
pipeline=train_pipeline)
|
||||||
|
|
||||||
|
|
||||||
|
dataset_valid = dict(
|
||||||
|
type='FaceOccluded',
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image',
|
||||||
|
ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask',
|
||||||
|
split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/split/val.txt',
|
||||||
|
pipeline=test_pipeline)
|
||||||
|
|
||||||
|
dataset_test = dict(
|
||||||
|
type='FaceOccluded',
|
||||||
|
data_root=data_root,
|
||||||
|
img_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/image',
|
||||||
|
ann_dir='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/mask',
|
||||||
|
split='occlusion-aware-dataset/HQ-FO-dataset/RealOcc/test.txt',
|
||||||
|
pipeline=test_pipeline)
|
||||||
|
|
||||||
|
data = dict(
|
||||||
|
samples_per_gpu=2,
|
||||||
|
workers_per_gpu=2,
|
||||||
|
train=[
|
||||||
|
dataset_train_A,dataset_train_B,
|
||||||
|
],
|
||||||
|
val= dataset_valid,
|
||||||
|
test=dataset_test)
|
@ -0,0 +1,66 @@
|
|||||||
|
# +
|
||||||
|
_base_ = '../_base_/dataset/occlude_face.py'
|
||||||
|
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
||||||
|
model = dict(
|
||||||
|
type='EncoderDecoder',
|
||||||
|
pretrained='open-mmlab://resnet101_v1c',
|
||||||
|
backbone=dict(
|
||||||
|
type='ResNetV1c',
|
||||||
|
depth=101,
|
||||||
|
num_stages=4,
|
||||||
|
out_indices=(0, 1, 2, 3),
|
||||||
|
dilations=(1, 1, 2, 4),
|
||||||
|
strides=(1, 2, 1, 1),
|
||||||
|
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||||
|
norm_eval=False,
|
||||||
|
style='pytorch',
|
||||||
|
contract_dilation=True),
|
||||||
|
decode_head=dict(
|
||||||
|
type='DepthwiseSeparableASPPHead',
|
||||||
|
in_channels=2048,
|
||||||
|
in_index=3,
|
||||||
|
channels=512,
|
||||||
|
dilations=(1, 12, 24, 36),
|
||||||
|
c1_in_channels=256,
|
||||||
|
c1_channels=48,
|
||||||
|
dropout_ratio=0.1,
|
||||||
|
num_classes=2,
|
||||||
|
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||||
|
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)),
|
||||||
|
auxiliary_head=dict(
|
||||||
|
type='FCNHead',
|
||||||
|
in_channels=1024,
|
||||||
|
in_index=2,
|
||||||
|
channels=256,
|
||||||
|
num_convs=1,
|
||||||
|
concat_input=False,
|
||||||
|
dropout_ratio=0.1,
|
||||||
|
num_classes=2,
|
||||||
|
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
||||||
|
align_corners=False,
|
||||||
|
loss_decode=dict(
|
||||||
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
||||||
|
train_cfg=dict(),
|
||||||
|
test_cfg=dict(mode='whole'))
|
||||||
|
log_config = dict(
|
||||||
|
interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])
|
||||||
|
dist_params = dict(backend='nccl')
|
||||||
|
log_level = 'INFO'
|
||||||
|
load_from = None
|
||||||
|
resume_from = None
|
||||||
|
workflow = [('train', 1)]
|
||||||
|
cudnn_benchmark = True
|
||||||
|
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||||
|
optimizer_config = dict()
|
||||||
|
lr_config = dict(policy='poly', power=0.9, min_lr=0.0001, by_epoch=False)
|
||||||
|
runner = dict(type='IterBasedRunner', max_iters=30000)
|
||||||
|
checkpoint_config = dict(by_epoch=False, interval=400)
|
||||||
|
evaluation = dict(
|
||||||
|
interval=400, metric=['mIoU', 'mDice', 'mFscore'], pre_eval=True)
|
||||||
|
|
||||||
|
work_dir = './work_dirs/deeplabv3plus_r101_512x512_C-CM+C-WO-NatOcc-SOT'
|
||||||
|
gpu_ids = range(0, 2)
|
||||||
|
auto_resume = False
|
Loading…
x
Reference in New Issue
Block a user