mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Feature] benchmark can add work_dir and repeat times, test.py now has default work-dir (#1126)
* [Feature] benchmark can add work_dir and repeat times * change the parameter's name * change the name of the log file * add skp road * add default work dir * make it optional * Update tools/benchmark.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * Update tools/benchmark.py Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> * fix typo * modify json name Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
This commit is contained in:
parent
634fbceab0
commit
fa0b1ead3e
@ -1,7 +1,10 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os.path as osp
|
||||
import time
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmcv import Config
|
||||
from mmcv.parallel import MMDataParallel
|
||||
@ -17,6 +20,11 @@ def parse_args():
|
||||
parser.add_argument('checkpoint', help='checkpoint file')
|
||||
parser.add_argument(
|
||||
'--log-interval', type=int, default=50, help='interval of logging')
|
||||
parser.add_argument(
|
||||
'--work-dir',
|
||||
help=('if specified, the results will be dumped '
|
||||
'into the directory as json'))
|
||||
parser.add_argument('--repeat-times', type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
@ -25,61 +33,87 @@ def main():
|
||||
args = parse_args()
|
||||
|
||||
cfg = Config.fromfile(args.config)
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
if args.work_dir is not None:
|
||||
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
|
||||
json_file = osp.join(args.work_dir, f'fps_{timestamp}.json')
|
||||
else:
|
||||
# use config filename as default work_dir if cfg.work_dir is None
|
||||
work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
||||
json_file = osp.join(work_dir, f'fps_{timestamp}.json')
|
||||
|
||||
repeat_times = args.repeat_times
|
||||
# set cudnn_benchmark
|
||||
torch.backends.cudnn.benchmark = False
|
||||
cfg.model.pretrained = None
|
||||
cfg.data.test.test_mode = True
|
||||
|
||||
# build the dataloader
|
||||
# TODO: support multiple images per gpu (only minor changes are needed)
|
||||
dataset = build_dataset(cfg.data.test)
|
||||
data_loader = build_dataloader(
|
||||
dataset,
|
||||
samples_per_gpu=1,
|
||||
workers_per_gpu=cfg.data.workers_per_gpu,
|
||||
dist=False,
|
||||
shuffle=False)
|
||||
benchmark_dict = dict(config=args.config, unit='img / s')
|
||||
overall_fps_list = []
|
||||
for time_index in range(repeat_times):
|
||||
print(f'Run {time_index + 1}:')
|
||||
# build the dataloader
|
||||
# TODO: support multiple images per gpu (only minor changes are needed)
|
||||
dataset = build_dataset(cfg.data.test)
|
||||
data_loader = build_dataloader(
|
||||
dataset,
|
||||
samples_per_gpu=1,
|
||||
workers_per_gpu=cfg.data.workers_per_gpu,
|
||||
dist=False,
|
||||
shuffle=False)
|
||||
|
||||
# build the model and load checkpoint
|
||||
cfg.model.train_cfg = None
|
||||
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
|
||||
fp16_cfg = cfg.get('fp16', None)
|
||||
if fp16_cfg is not None:
|
||||
wrap_fp16_model(model)
|
||||
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
||||
# build the model and load checkpoint
|
||||
cfg.model.train_cfg = None
|
||||
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
|
||||
fp16_cfg = cfg.get('fp16', None)
|
||||
if fp16_cfg is not None:
|
||||
wrap_fp16_model(model)
|
||||
if 'checkpoint' in args and osp.exists(args.checkpoint):
|
||||
load_checkpoint(model, args.checkpoint, map_location='cpu')
|
||||
|
||||
model = MMDataParallel(model, device_ids=[0])
|
||||
model = MMDataParallel(model, device_ids=[0])
|
||||
|
||||
model.eval()
|
||||
model.eval()
|
||||
|
||||
# the first several iterations may be very slow so skip them
|
||||
num_warmup = 5
|
||||
pure_inf_time = 0
|
||||
total_iters = 200
|
||||
# the first several iterations may be very slow so skip them
|
||||
num_warmup = 5
|
||||
pure_inf_time = 0
|
||||
total_iters = 200
|
||||
|
||||
# benchmark with 200 image and take the average
|
||||
for i, data in enumerate(data_loader):
|
||||
# benchmark with 200 image and take the average
|
||||
for i, data in enumerate(data_loader):
|
||||
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.perf_counter()
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.perf_counter()
|
||||
|
||||
with torch.no_grad():
|
||||
model(return_loss=False, rescale=True, **data)
|
||||
with torch.no_grad():
|
||||
model(return_loss=False, rescale=True, **data)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
elapsed = time.perf_counter() - start_time
|
||||
torch.cuda.synchronize()
|
||||
elapsed = time.perf_counter() - start_time
|
||||
|
||||
if i >= num_warmup:
|
||||
pure_inf_time += elapsed
|
||||
if (i + 1) % args.log_interval == 0:
|
||||
if i >= num_warmup:
|
||||
pure_inf_time += elapsed
|
||||
if (i + 1) % args.log_interval == 0:
|
||||
fps = (i + 1 - num_warmup) / pure_inf_time
|
||||
print(f'Done image [{i + 1:<3}/ {total_iters}], '
|
||||
f'fps: {fps:.2f} img / s')
|
||||
|
||||
if (i + 1) == total_iters:
|
||||
fps = (i + 1 - num_warmup) / pure_inf_time
|
||||
print(f'Done image [{i + 1:<3}/ {total_iters}], '
|
||||
f'fps: {fps:.2f} img / s')
|
||||
|
||||
if (i + 1) == total_iters:
|
||||
fps = (i + 1 - num_warmup) / pure_inf_time
|
||||
print(f'Overall fps: {fps:.2f} img / s')
|
||||
break
|
||||
print(f'Overall fps: {fps:.2f} img / s\n')
|
||||
benchmark_dict[f'overall_fps_{time_index + 1}'] = round(fps, 2)
|
||||
overall_fps_list.append(fps)
|
||||
break
|
||||
benchmark_dict['average_fps'] = round(np.mean(overall_fps_list), 2)
|
||||
benchmark_dict['fps_variance'] = round(np.var(overall_fps_list), 4)
|
||||
print(f'Average fps of {repeat_times} evaluations: '
|
||||
f'{benchmark_dict["average_fps"]}')
|
||||
print(f'The variance of {repeat_times} evaluations: '
|
||||
f'{benchmark_dict["fps_variance"]}')
|
||||
mmcv.dump(benchmark_dict, json_file, indent=4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -109,7 +109,6 @@ def parse_args():
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
assert args.out or args.eval or args.format_only or args.show \
|
||||
or args.show_dir, \
|
||||
('Please specify at least one operation (save/eval/format/show the '
|
||||
@ -149,7 +148,23 @@ def main():
|
||||
if args.work_dir is not None and rank == 0:
|
||||
mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
json_file = osp.join(args.work_dir, f'eval_{timestamp}.json')
|
||||
if args.aug_test:
|
||||
json_file = osp.join(args.work_dir,
|
||||
f'eval_multi_scale_{timestamp}.json')
|
||||
else:
|
||||
json_file = osp.join(args.work_dir,
|
||||
f'eval_single_scale_{timestamp}.json')
|
||||
elif rank == 0:
|
||||
work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
mmcv.mkdir_or_exist(osp.abspath(work_dir))
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
if args.aug_test:
|
||||
json_file = osp.join(work_dir,
|
||||
f'eval_multi_scale_{timestamp}.json')
|
||||
else:
|
||||
json_file = osp.join(work_dir,
|
||||
f'eval_single_scale_{timestamp}.json')
|
||||
|
||||
# build the dataloader
|
||||
# TODO: support multiple images per gpu (only minor changes are needed)
|
||||
@ -248,8 +263,7 @@ def main():
|
||||
eval_kwargs.update(metric=args.eval)
|
||||
metric = dataset.evaluate(results, **eval_kwargs)
|
||||
metric_dict = dict(config=args.config, metric=metric)
|
||||
if args.work_dir is not None and rank == 0:
|
||||
mmcv.dump(metric_dict, json_file, indent=4)
|
||||
mmcv.dump(metric_dict, json_file, indent=4)
|
||||
if tmpdir is not None and eval_on_format_results:
|
||||
# remove tmp dir when cityscapes evaluation
|
||||
shutil.rmtree(tmpdir)
|
||||
|
Loading…
x
Reference in New Issue
Block a user