[Refactor] Use MMCV MODEL_REGISTRY (#515)

* [Refactor] Use MMCV MODEL_REGISTRY

* fixed args
pull/1801/head
Jerry Jiarui XU 2021-04-27 23:51:09 -07:00 committed by GitHub
parent b0413ef58d
commit fb031c59c8
1 changed files with 14 additions and 34 deletions

View File

@ -1,56 +1,35 @@
import warnings
from mmcv.utils import Registry, build_from_cfg
from torch import nn
from mmcv.cnn import MODELS as MMCV_MODELS
from mmcv.utils import Registry
BACKBONES = Registry('backbone')
NECKS = Registry('neck')
HEADS = Registry('head')
LOSSES = Registry('loss')
SEGMENTORS = Registry('segmentor')
MODELS = Registry('models', parent=MMCV_MODELS)
def build(cfg, registry, default_args=None):
"""Build a module.
Args:
cfg (dict, list[dict]): The config of modules, is is either a dict
or a list of configs.
registry (:obj:`Registry`): A registry the module belongs to.
default_args (dict, optional): Default arguments to build the module.
Defaults to None.
Returns:
nn.Module: A built nn module.
"""
if isinstance(cfg, list):
modules = [
build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg
]
return nn.Sequential(*modules)
else:
return build_from_cfg(cfg, registry, default_args)
BACKBONES = MODELS
NECKS = MODELS
HEADS = MODELS
LOSSES = MODELS
SEGMENTORS = MODELS
def build_backbone(cfg):
"""Build backbone."""
return build(cfg, BACKBONES)
return BACKBONES.build(cfg)
def build_neck(cfg):
"""Build neck."""
return build(cfg, NECKS)
return NECKS.build(cfg)
def build_head(cfg):
"""Build head."""
return build(cfg, HEADS)
return HEADS.build(cfg)
def build_loss(cfg):
"""Build loss."""
return build(cfg, LOSSES)
return LOSSES.build(cfg)
def build_segmentor(cfg, train_cfg=None, test_cfg=None):
@ -63,4 +42,5 @@ def build_segmentor(cfg, train_cfg=None, test_cfg=None):
'train_cfg specified in both outer field and model field '
assert cfg.get('test_cfg') is None or test_cfg is None, \
'test_cfg specified in both outer field and model field '
return build(cfg, SEGMENTORS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
return SEGMENTORS.build(
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))