mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Refactor] Refactor lr_config
This commit is contained in:
parent
6b34566eba
commit
fcb9cb4571
@ -2,13 +2,20 @@
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=160000,
|
||||
by_epoch=False)
|
||||
]
|
||||
# training schedule for 160k
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=160000, val_interval=16000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=16000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
|
@ -2,12 +2,19 @@
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=20000,
|
||||
by_epoch=False)
|
||||
]
|
||||
# training schedule for 20k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=20000, val_interval=2000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=2000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
|
@ -2,13 +2,20 @@
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=320000,
|
||||
by_epoch=False)
|
||||
]
|
||||
# training schedule for 320k
|
||||
train_cfg = dict(
|
||||
type='IterBasedTrainLoop', max_iters=320000, val_interval=32000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=32000, metric='mIoU')
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
|
@ -2,12 +2,19 @@
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=40000,
|
||||
by_epoch=False)
|
||||
]
|
||||
# training schedule for 40k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=40000, val_interval=4000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=4000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
|
@ -2,12 +2,19 @@
|
||||
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=80000,
|
||||
by_epoch=False)
|
||||
]
|
||||
# training schedule for 80k
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=80000, val_interval=8000)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
evaluation = dict(interval=8000, metric='mIoU', pre_eval=True)
|
||||
default_hooks = dict(
|
||||
optimizer=dict(type='OptimizerHook', grad_clip=None),
|
||||
timer=dict(type='IterTimerHook'),
|
||||
|
@ -20,15 +20,18 @@ optim_wrapper = dict(
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -33,15 +33,19 @@ optim_wrapper = dict(
|
||||
optimizer=optimizer,
|
||||
constructor='LayerDecayOptimizerConstructor',
|
||||
paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95))
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=3000,
|
||||
warmup_ratio=1e-6,
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=3000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=3000,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=1)
|
||||
val_dataloader = dict(batch_size=1)
|
||||
|
@ -14,7 +14,17 @@ model = dict(
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -3,7 +3,17 @@ _base_ = [
|
||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -8,7 +8,17 @@ model = dict(
|
||||
backbone_cfg=dict(
|
||||
init_cfg=dict(
|
||||
type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))))
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -9,6 +9,19 @@ model = dict(
|
||||
dict(num_classes=171),
|
||||
dict(num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -34,7 +34,17 @@ model = dict(
|
||||
norm_cfg=norm_cfg,
|
||||
concat_input=False),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -14,6 +14,19 @@ model = dict(
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
dict(in_channels=512, channels=256, num_classes=171),
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
val_dataloader = dict(batch_size=4, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -3,7 +3,17 @@ _base_ = [
|
||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -3,7 +3,17 @@ _base_ = [
|
||||
'../_base_/datasets/cityscapes_1024x1024.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=8, num_workers=4)
|
||||
|
@ -62,7 +62,17 @@ models = dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
||||
],
|
||||
)
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
train_dataloader = dict(batch_size=4, num_workers=4)
|
||||
|
@ -4,7 +4,15 @@ _base_ = ['../_base_/models/cgnet.py', '../_base_/default_runtime.py']
|
||||
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
begin=0,
|
||||
end=60000)
|
||||
]
|
||||
# runtime settings
|
||||
total_iters = 60000
|
||||
train_cfg = dict(
|
||||
@ -12,7 +20,6 @@ train_cfg = dict(
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=4000))
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
|
||||
# dataset settings
|
||||
dataset_type = 'CityscapesDataset'
|
||||
|
@ -7,7 +7,15 @@ _base_ = [
|
||||
optimizer = dict(type='Adam', lr=0.001, eps=1e-08, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
# learning policy
|
||||
lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
by_epoch=False,
|
||||
begin=0,
|
||||
end=60000)
|
||||
]
|
||||
# runtime settings
|
||||
total_iters = 60000
|
||||
train_cfg = dict(
|
||||
@ -15,7 +23,6 @@ train_cfg = dict(
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
default_hooks = dict(checkpoint=dict(by_epoch=False, interval=4000))
|
||||
evaluation = dict(interval=4000, metric='mIoU')
|
||||
|
||||
img_norm_cfg = dict(
|
||||
mean=[72.39239876, 82.90891754, 73.15835921], std=[1, 1, 1], to_rgb=True)
|
||||
|
@ -26,15 +26,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -41,15 +41,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -41,15 +41,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -40,15 +40,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -40,15 +40,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -41,15 +41,18 @@ optim_wrapper = dict(
|
||||
},
|
||||
constructor='LearningRateDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
eta_min=0.0,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -22,15 +22,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -86,14 +86,18 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
milestones=[60000, 72000],
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -86,14 +86,18 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
milestones=[60000, 72000],
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -85,14 +85,18 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
milestones=[60000, 72000],
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -86,14 +86,18 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
milestones=[60000, 72000],
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -54,14 +54,18 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
milestones=[60000, 72000],
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
# In K-Net implementation we use batch size 2 per GPU as default
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -35,15 +35,18 @@ optim_wrapper = dict(
|
||||
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65),
|
||||
constructor='LayerDecayOptimizerConstructor')
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# mixed precision
|
||||
fp16 = dict(loss_scale='dynamic')
|
||||
|
@ -5,4 +5,12 @@ _base_ = [
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
||||
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
lr_config = dict(min_lr=2e-4)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=2e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=40000,
|
||||
by_epoch=False)
|
||||
]
|
||||
|
@ -5,4 +5,12 @@ _base_ = [
|
||||
model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
|
||||
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0005)
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)
|
||||
lr_config = dict(min_lr=2e-4)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=2e-4,
|
||||
power=0.9,
|
||||
begin=0,
|
||||
end=40000,
|
||||
by_epoch=False)
|
||||
]
|
||||
|
@ -2,4 +2,14 @@ _base_ = [
|
||||
'../_base_/models/pointrend_r50.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=200)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=200),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=200,
|
||||
end=80000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
@ -29,4 +29,14 @@ model = dict(decode_head=[
|
||||
loss_decode=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0))
|
||||
])
|
||||
lr_config = dict(warmup='linear', warmup_iters=200)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=200),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=200,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
@ -20,11 +20,15 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
by_epoch=False,
|
||||
milestones=[60000, 72000],
|
||||
)
|
||||
]
|
||||
|
@ -18,11 +18,15 @@ default_hooks = dict(
|
||||
type='OptimizerHook',
|
||||
grad_clip=dict(max_norm=1, norm_type=2)))
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=1000,
|
||||
warmup_ratio=0.001,
|
||||
step=[60000, 72000],
|
||||
by_epoch=False)
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
type='MultiStepLR',
|
||||
begin=1000,
|
||||
end=80000,
|
||||
by_epoch=False,
|
||||
milestones=[60000, 72000],
|
||||
)
|
||||
]
|
||||
|
@ -24,15 +24,18 @@ optim_wrapper = dict(
|
||||
'head': dict(lr_mult=10.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -26,15 +26,20 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.),
|
||||
'head': dict(lr_mult=10.)
|
||||
}))
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=1, num_workers=1)
|
||||
val_dataloader = dict(batch_size=1, num_workers=1)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -2,7 +2,17 @@ _base_ = [
|
||||
'../_base_/models/stdc.py', '../_base_/datasets/cityscapes.py',
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
|
||||
]
|
||||
lr_config = dict(warmup='linear', warmup_iters=1000)
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=1e-4,
|
||||
power=0.9,
|
||||
begin=1000,
|
||||
end=80000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
train_dataloader = dict(batch_size=12, num_workers=4)
|
||||
val_dataloader = dict(batch_size=12, num_workers=4)
|
||||
test_dataloader = val_dataloader
|
||||
|
@ -35,15 +35,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -19,12 +19,15 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
@ -34,15 +34,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
train_dataloader = dict(batch_size=2, num_workers=2)
|
||||
val_dataloader = dict(batch_size=2, num_workers=2)
|
||||
|
@ -4,4 +4,3 @@ _base_ = [
|
||||
'../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -4,4 +4,3 @@ _base_ = [
|
||||
'../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -3,4 +3,3 @@ _base_ = [
|
||||
'../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
|
||||
]
|
||||
model = dict(test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
|
||||
evaluation = dict(metric='mDice')
|
||||
|
@ -29,15 +29,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -28,15 +28,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=160000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
@ -28,15 +28,18 @@ optim_wrapper = dict(
|
||||
'norm': dict(decay_mult=0.)
|
||||
}))
|
||||
|
||||
lr_config = dict(
|
||||
_delete_=True,
|
||||
policy='poly',
|
||||
warmup='linear',
|
||||
warmup_iters=1500,
|
||||
warmup_ratio=1e-6,
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
|
||||
dict(
|
||||
type='PolyLR',
|
||||
eta_min=0.0,
|
||||
power=1.0,
|
||||
min_lr=0.0,
|
||||
by_epoch=False)
|
||||
begin=1500,
|
||||
end=80000,
|
||||
by_epoch=False,
|
||||
)
|
||||
]
|
||||
|
||||
# By default, models are trained on 8 GPUs with 2 images per GPU
|
||||
train_dataloader = dict(batch_size=2)
|
||||
|
Loading…
x
Reference in New Issue
Block a user