mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Fix] Fix Dataset Display on README.md (#1072)
* fix dataset display on readme * delete pytorch1.3.1 * change PyTorch 1.5.1 to 1.5or1.5.0 * change PyTorch 1.5.1 to 1.5.0 * change PyTorch 1.5.1 to 1.5.0 * fix cu102
This commit is contained in:
parent
48d4222412
commit
fdc054614c
36
.github/workflows/build.yml
vendored
36
.github/workflows/build.yml
vendored
@ -27,26 +27,23 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: [3.7]
|
||||
torch: [1.3.1, 1.5.1, 1.6.0, 1.7.0, 1.8.0, 1.9.0]
|
||||
torch: [1.5.1, 1.6.0, 1.7.0, 1.8.0, 1.9.0]
|
||||
include:
|
||||
- torch: 1.3.1
|
||||
torchvision: 0.4.2
|
||||
mmcv: "latest+torch1.3.0+cpu"
|
||||
- torch: 1.5.1
|
||||
torchvision: 0.6.1
|
||||
mmcv: "latest+torch1.5.0+cpu"
|
||||
mmcv: 1.5.0
|
||||
- torch: 1.6.0
|
||||
torchvision: 0.7.0
|
||||
mmcv: "latest+torch1.6.0+cpu"
|
||||
mmcv: 1.6.0
|
||||
- torch: 1.7.0
|
||||
torchvision: 0.8.1
|
||||
mmcv: "latest+torch1.7.0+cpu"
|
||||
mmcv: 1.7.0
|
||||
- torch: 1.8.0
|
||||
torchvision: 0.9.0
|
||||
mmcv: "latest+torch1.8.0+cpu"
|
||||
mmcv: 1.8.0
|
||||
- torch: 1.9.0
|
||||
torchvision: 0.10.0
|
||||
mmcv: "latest+torch1.9.0+cpu"
|
||||
mmcv: 1.9.0
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
@ -62,7 +59,7 @@ jobs:
|
||||
run: pip install torch==${{matrix.torch}}+cpu torchvision==${{matrix.torchvision}}+cpu -f https://download.pytorch.org/whl/torch_stable.html
|
||||
- name: Install MMCV
|
||||
run: |
|
||||
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/torch${{matrix.torch}}/index.html
|
||||
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cpu/torch${{matrix.mmcv}}/index.html
|
||||
python -c 'import mmcv; print(mmcv.__version__)'
|
||||
- name: Install unittest dependencies
|
||||
run: |
|
||||
@ -93,33 +90,28 @@ jobs:
|
||||
python-version: [3.7]
|
||||
torch:
|
||||
[
|
||||
1.3.1,
|
||||
1.5.1+cu101,
|
||||
1.6.0+cu101,
|
||||
1.7.0+cu101,
|
||||
1.8.0+cu101
|
||||
]
|
||||
include:
|
||||
- torch: 1.3.1
|
||||
torch_version: torch1.3.1
|
||||
torchvision: 0.4.2
|
||||
mmcv_link: "torch1.3.0"
|
||||
- torch: 1.5.1+cu101
|
||||
torch_version: torch1.5.1
|
||||
torchvision: 0.6.1+cu101
|
||||
mmcv_link: "torch1.5.0"
|
||||
mmcv: 1.5.0
|
||||
- torch: 1.6.0+cu101
|
||||
torch_version: torch1.6.0
|
||||
torchvision: 0.7.0+cu101
|
||||
mmcv_link: "torch1.6.0"
|
||||
mmcv: 1.6.0
|
||||
- torch: 1.7.0+cu101
|
||||
torch_version: torch1.7.0
|
||||
torchvision: 0.8.1+cu101
|
||||
mmcv_link: "torch1.7.0"
|
||||
mmcv: 1.7.0
|
||||
- torch: 1.8.0+cu101
|
||||
torch_version: torch1.8.0
|
||||
torchvision: 0.9.0+cu101
|
||||
mmcv_link: "torch1.8.0"
|
||||
mmcv: 1.8.0
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
@ -140,7 +132,7 @@ jobs:
|
||||
- name: Install mmseg dependencies
|
||||
run: |
|
||||
python -V
|
||||
python -m pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/${{matrix.mmcv_link}}/index.html
|
||||
python -m pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch${{matrix.mmcv}}/index.html
|
||||
python -m pip install -r requirements.txt
|
||||
python -c 'import mmcv; print(mmcv.__version__)'
|
||||
- name: Build and install
|
||||
@ -183,7 +175,7 @@ jobs:
|
||||
- torch: 1.9.0+cu102
|
||||
torch_version: torch1.9.0
|
||||
torchvision: 0.10.0+cu102
|
||||
mmcv_link: "torch1.9.0"
|
||||
mmcv_link: 1.9.0
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
@ -204,7 +196,7 @@ jobs:
|
||||
- name: Install mmseg dependencies
|
||||
run: |
|
||||
python -V
|
||||
python -m pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu102/${{matrix.mmcv_link}}/index.html
|
||||
python -m pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu102/torch${{matrix.mmcv_link}}/index.html
|
||||
python -m pip install -r requirements.txt
|
||||
python -c 'import mmcv; print(mmcv.__version__)'
|
||||
- name: Build and install
|
||||
|
@ -21,7 +21,7 @@ English | [简体中文](README_zh-CN.md)
|
||||
MMSegmentation is an open source semantic segmentation toolbox based on PyTorch.
|
||||
It is a part of the OpenMMLab project.
|
||||
|
||||
The master branch works with **PyTorch 1.3+**.
|
||||
The master branch works with **PyTorch 1.5+**.
|
||||
|
||||

|
||||
|
||||
@ -114,6 +114,7 @@ Supported datasets:
|
||||
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#stare)
|
||||
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#dark-zurich)
|
||||
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#nighttime-driving)
|
||||
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#loveda)
|
||||
|
||||
## Installation
|
||||
|
||||
|
@ -20,7 +20,7 @@
|
||||
|
||||
MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 OpenMMLab 项目的一部分。
|
||||
|
||||
主分支代码目前支持 PyTorch 1.3 以上的版本。
|
||||
主分支代码目前支持 PyTorch 1.5 以上的版本。
|
||||
|
||||

|
||||
|
||||
@ -101,18 +101,19 @@ MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱。它是 O
|
||||
|
||||
已支持的数据集:
|
||||
|
||||
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#cityscapes)
|
||||
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-voc)
|
||||
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#ade20k)
|
||||
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#pascal-context)
|
||||
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#coco-stuff-10k)
|
||||
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#coco-stuff-164k)
|
||||
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#chase-db1)
|
||||
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#drive)
|
||||
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#hrf)
|
||||
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#stare)
|
||||
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#dark-zurich)
|
||||
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/dataset_prepare.md#nighttime-driving)
|
||||
- [x] [Cityscapes](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#cityscapes)
|
||||
- [x] [PASCAL VOC](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#pascal-voc)
|
||||
- [x] [ADE20K](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#ade20k)
|
||||
- [x] [Pascal Context](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#pascal-context)
|
||||
- [x] [COCO-Stuff 10k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#coco-stuff-10k)
|
||||
- [x] [COCO-Stuff 164k](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#coco-stuff-164k)
|
||||
- [x] [CHASE_DB1](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#chase-db1)
|
||||
- [x] [DRIVE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#drive)
|
||||
- [x] [HRF](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#hrf)
|
||||
- [x] [STARE](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#stare)
|
||||
- [x] [Dark Zurich](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#dark-zurich)
|
||||
- [x] [Nighttime Driving](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#nighttime-driving)
|
||||
- [x] [LoveDA](https://github.com/open-mmlab/mmsegmentation/blob/master/docs_zh-CN/dataset_prepare.md#loveda)
|
||||
|
||||
## 安装
|
||||
|
||||
|
@ -62,7 +62,7 @@
|
||||
| DeepLabV3+ | R-50-D8 | 512x512 | 160000 | - | - | 43.95 | 44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 512x512 | 160000 | - | - | 45.47 | 46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) |
|
||||
|
||||
#### Pascal VOC 2012 + Aug
|
||||
### Pascal VOC 2012 + Aug
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
@ -71,21 +71,21 @@
|
||||
| DeepLabV3+ | R-50-D8 | 512x512 | 40000 | - | - | 76.81 | 77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 512x512 | 40000 | - | - | 78.62 | 79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) |
|
||||
|
||||
#### Pascal Context
|
||||
### Pascal Context
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | 9.09 | 47.30 | 48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 47.23 | 48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) |
|
||||
|
||||
#### Pascal Context 59
|
||||
### Pascal Context 59
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 40000 | - | - | 52.86 | 54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
|
||||
| DeepLabV3+ | R-101-D8 | 480x480 | 80000 | - | - | 53.2 | 54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |
|
||||
|
||||
#### LoveDA
|
||||
### LoveDA
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
|
@ -4,6 +4,10 @@ Collections:
|
||||
Training Data:
|
||||
- Cityscapes
|
||||
- ADE20K
|
||||
- Pascal VOC 2012 + Aug
|
||||
- Pascal Context
|
||||
- Pascal Context 59
|
||||
- LoveDA
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1802.02611
|
||||
Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
|
||||
@ -480,7 +484,7 @@ Models:
|
||||
memory (GB): 7.6
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
Metrics:
|
||||
mIoU: 75.93
|
||||
mIoU(ms+flip): 77.5
|
||||
@ -502,7 +506,7 @@ Models:
|
||||
memory (GB): 11.0
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
Metrics:
|
||||
mIoU: 77.22
|
||||
mIoU(ms+flip): 78.59
|
||||
@ -516,7 +520,7 @@ Models:
|
||||
lr schd: 40000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
Metrics:
|
||||
mIoU: 76.81
|
||||
mIoU(ms+flip): 77.57
|
||||
@ -530,7 +534,7 @@ Models:
|
||||
lr schd: 40000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal VOC 2012 + Aug
|
||||
Metrics:
|
||||
mIoU: 78.62
|
||||
mIoU(ms+flip): 79.53
|
||||
@ -551,7 +555,7 @@ Models:
|
||||
resolution: (480,480)
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal Context
|
||||
Metrics:
|
||||
mIoU: 47.3
|
||||
mIoU(ms+flip): 48.47
|
||||
@ -565,7 +569,7 @@ Models:
|
||||
lr schd: 80000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal Context
|
||||
Metrics:
|
||||
mIoU: 47.23
|
||||
mIoU(ms+flip): 48.26
|
||||
@ -579,7 +583,7 @@ Models:
|
||||
lr schd: 40000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal Context 59
|
||||
Metrics:
|
||||
mIoU: 52.86
|
||||
mIoU(ms+flip): 54.54
|
||||
@ -593,7 +597,7 @@ Models:
|
||||
lr schd: 80000
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: Pascal Context 59
|
||||
Metrics:
|
||||
mIoU: 53.2
|
||||
mIoU(ms+flip): 54.67
|
||||
@ -615,7 +619,7 @@ Models:
|
||||
memory (GB): 1.93
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 50.28
|
||||
mIoU(ms+flip): 50.47
|
||||
@ -637,7 +641,7 @@ Models:
|
||||
memory (GB): 7.37
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 50.99
|
||||
mIoU(ms+flip): 50.65
|
||||
@ -659,7 +663,7 @@ Models:
|
||||
memory (GB): 10.84
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: ADE20K
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 51.47
|
||||
mIoU(ms+flip): 51.32
|
||||
|
@ -74,7 +74,7 @@
|
||||
| FCN | HRNetV2p-W48 | 480x480 | 40000 | - | - | 50.33 | 52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_480x480_40k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) |
|
||||
| FCN | HRNetV2p-W48 | 480x480 | 80000 | - | - | 51.12 | 53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_480x480_80k_pascal_context_59.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) |
|
||||
|
||||
#### LoveDA
|
||||
### LoveDA
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
|
@ -7,6 +7,7 @@ Collections:
|
||||
- Pascal VOC 2012 + Aug
|
||||
- Pascal Context
|
||||
- Pascal Context 59
|
||||
- LoveDA
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1908.07919
|
||||
Title: Deep High-Resolution Representation Learning for Human Pose Estimation
|
||||
@ -463,7 +464,7 @@ Models:
|
||||
memory (GB): 1.72
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context 59
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 49.3
|
||||
mIoU(ms+flip): 49.23
|
||||
@ -485,7 +486,7 @@ Models:
|
||||
memory (GB): 2.9
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context 59
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 50.87
|
||||
mIoU(ms+flip): 51.24
|
||||
@ -507,7 +508,7 @@ Models:
|
||||
memory (GB): 6.25
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: Pascal Context 59
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 51.04
|
||||
mIoU(ms+flip): 51.12
|
||||
|
@ -114,7 +114,7 @@ We support evaluation results on these two datasets using models above trained o
|
||||
| PSPNet | R-50-D8 | 512x512 | 320000 | - | - | 40.53 | 40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
|
||||
| PSPNet | R-101-D8 | 512x512 | 320000 | - | - | 41.95 | 42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |
|
||||
|
||||
#### LoveDA
|
||||
### LoveDA
|
||||
|
||||
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
|
||||
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
|
@ -10,6 +10,7 @@ Collections:
|
||||
- Dark Zurich and Nighttime Driving
|
||||
- COCO-Stuff 10k
|
||||
- COCO-Stuff 164k
|
||||
- LoveDA
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1612.01105
|
||||
Title: Pyramid Scene Parsing Network
|
||||
@ -757,7 +758,7 @@ Models:
|
||||
memory (GB): 1.45
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 48.62
|
||||
mIoU(ms+flip): 47.57
|
||||
@ -779,7 +780,7 @@ Models:
|
||||
memory (GB): 6.14
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 50.46
|
||||
mIoU(ms+flip): 50.19
|
||||
@ -801,7 +802,7 @@ Models:
|
||||
memory (GB): 9.61
|
||||
Results:
|
||||
- Task: Semantic Segmentation
|
||||
Dataset: COCO-Stuff 164k
|
||||
Dataset: LoveDA
|
||||
Metrics:
|
||||
mIoU: 51.86
|
||||
mIoU(ms+flip): 51.34
|
||||
|
Loading…
x
Reference in New Issue
Block a user