mirror of
https://github.com/open-mmlab/mmsegmentation.git
synced 2025-06-03 22:03:48 +08:00
[Del] Remove ops (#2063)
This commit is contained in:
parent
8aca73e187
commit
fffb9e2588
2
.github/workflows/lint.yml
vendored
2
.github/workflows/lint.yml
vendored
@ -28,4 +28,4 @@ jobs:
|
||||
- name: Check docstring coverage
|
||||
run: |
|
||||
python -m pip install interrogate
|
||||
interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --exclude mmseg/ops --ignore-regex "__repr__" --fail-under 75 mmseg
|
||||
interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-regex "__repr__" --fail-under 75 mmseg
|
||||
|
@ -1,75 +0,0 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
class Encoding(nn.Module):
|
||||
"""Encoding Layer: a learnable residual encoder.
|
||||
|
||||
Input is of shape (batch_size, channels, height, width).
|
||||
Output is of shape (batch_size, num_codes, channels).
|
||||
|
||||
Args:
|
||||
channels: dimension of the features or feature channels
|
||||
num_codes: number of code words
|
||||
"""
|
||||
|
||||
def __init__(self, channels, num_codes):
|
||||
super(Encoding, self).__init__()
|
||||
# init codewords and smoothing factor
|
||||
self.channels, self.num_codes = channels, num_codes
|
||||
std = 1. / ((num_codes * channels)**0.5)
|
||||
# [num_codes, channels]
|
||||
self.codewords = nn.Parameter(
|
||||
torch.empty(num_codes, channels,
|
||||
dtype=torch.float).uniform_(-std, std),
|
||||
requires_grad=True)
|
||||
# [num_codes]
|
||||
self.scale = nn.Parameter(
|
||||
torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0),
|
||||
requires_grad=True)
|
||||
|
||||
@staticmethod
|
||||
def scaled_l2(x, codewords, scale):
|
||||
num_codes, channels = codewords.size()
|
||||
batch_size = x.size(0)
|
||||
reshaped_scale = scale.view((1, 1, num_codes))
|
||||
expanded_x = x.unsqueeze(2).expand(
|
||||
(batch_size, x.size(1), num_codes, channels))
|
||||
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
|
||||
|
||||
scaled_l2_norm = reshaped_scale * (
|
||||
expanded_x - reshaped_codewords).pow(2).sum(dim=3)
|
||||
return scaled_l2_norm
|
||||
|
||||
@staticmethod
|
||||
def aggregate(assignment_weights, x, codewords):
|
||||
num_codes, channels = codewords.size()
|
||||
reshaped_codewords = codewords.view((1, 1, num_codes, channels))
|
||||
batch_size = x.size(0)
|
||||
|
||||
expanded_x = x.unsqueeze(2).expand(
|
||||
(batch_size, x.size(1), num_codes, channels))
|
||||
encoded_feat = (assignment_weights.unsqueeze(3) *
|
||||
(expanded_x - reshaped_codewords)).sum(dim=1)
|
||||
return encoded_feat
|
||||
|
||||
def forward(self, x):
|
||||
assert x.dim() == 4 and x.size(1) == self.channels
|
||||
# [batch_size, channels, height, width]
|
||||
batch_size = x.size(0)
|
||||
# [batch_size, height x width, channels]
|
||||
x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous()
|
||||
# assignment_weights: [batch_size, channels, num_codes]
|
||||
assignment_weights = F.softmax(
|
||||
self.scaled_l2(x, self.codewords, self.scale), dim=2)
|
||||
# aggregate
|
||||
encoded_feat = self.aggregate(assignment_weights, x, self.codewords)
|
||||
return encoded_feat
|
||||
|
||||
def __repr__(self):
|
||||
repr_str = self.__class__.__name__
|
||||
repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \
|
||||
f'x{self.channels})'
|
||||
return repr_str
|
@ -1,51 +0,0 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import warnings
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def resize(input,
|
||||
size=None,
|
||||
scale_factor=None,
|
||||
mode='nearest',
|
||||
align_corners=None,
|
||||
warning=True):
|
||||
if warning:
|
||||
if size is not None and align_corners:
|
||||
input_h, input_w = tuple(int(x) for x in input.shape[2:])
|
||||
output_h, output_w = tuple(int(x) for x in size)
|
||||
if output_h > input_h or output_w > output_h:
|
||||
if ((output_h > 1 and output_w > 1 and input_h > 1
|
||||
and input_w > 1) and (output_h - 1) % (input_h - 1)
|
||||
and (output_w - 1) % (input_w - 1)):
|
||||
warnings.warn(
|
||||
f'When align_corners={align_corners}, '
|
||||
'the output would more aligned if '
|
||||
f'input size {(input_h, input_w)} is `x+1` and '
|
||||
f'out size {(output_h, output_w)} is `nx+1`')
|
||||
return F.interpolate(input, size, scale_factor, mode, align_corners)
|
||||
|
||||
|
||||
class Upsample(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
size=None,
|
||||
scale_factor=None,
|
||||
mode='nearest',
|
||||
align_corners=None):
|
||||
super(Upsample, self).__init__()
|
||||
self.size = size
|
||||
if isinstance(scale_factor, tuple):
|
||||
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
||||
else:
|
||||
self.scale_factor = float(scale_factor) if scale_factor else None
|
||||
self.mode = mode
|
||||
self.align_corners = align_corners
|
||||
|
||||
def forward(self, x):
|
||||
if not self.size:
|
||||
size = [int(t * self.scale_factor) for t in x.shape[-2:]]
|
||||
else:
|
||||
size = self.size
|
||||
return resize(x, size, None, self.mode, self.align_corners)
|
Loading…
x
Reference in New Issue
Block a user