From fffb9e25885c45e4e67bb1febd8011441a85968e Mon Sep 17 00:00:00 2001 From: Miao Zheng <76149310+MeowZheng@users.noreply.github.com> Date: Tue, 13 Sep 2022 15:47:42 +0800 Subject: [PATCH] [Del] Remove ops (#2063) --- .github/workflows/lint.yml | 2 +- mmseg/ops/encoding.py | 75 -------------------------------------- mmseg/ops/wrappers.py | 51 -------------------------- 3 files changed, 1 insertion(+), 127 deletions(-) delete mode 100644 mmseg/ops/encoding.py delete mode 100644 mmseg/ops/wrappers.py diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml index de1cab255..644eaf651 100644 --- a/.github/workflows/lint.yml +++ b/.github/workflows/lint.yml @@ -28,4 +28,4 @@ jobs: - name: Check docstring coverage run: | python -m pip install interrogate - interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --exclude mmseg/ops --ignore-regex "__repr__" --fail-under 75 mmseg + interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-regex "__repr__" --fail-under 75 mmseg diff --git a/mmseg/ops/encoding.py b/mmseg/ops/encoding.py deleted file mode 100644 index f397cc54e..000000000 --- a/mmseg/ops/encoding.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import torch -from torch import nn -from torch.nn import functional as F - - -class Encoding(nn.Module): - """Encoding Layer: a learnable residual encoder. - - Input is of shape (batch_size, channels, height, width). - Output is of shape (batch_size, num_codes, channels). - - Args: - channels: dimension of the features or feature channels - num_codes: number of code words - """ - - def __init__(self, channels, num_codes): - super(Encoding, self).__init__() - # init codewords and smoothing factor - self.channels, self.num_codes = channels, num_codes - std = 1. / ((num_codes * channels)**0.5) - # [num_codes, channels] - self.codewords = nn.Parameter( - torch.empty(num_codes, channels, - dtype=torch.float).uniform_(-std, std), - requires_grad=True) - # [num_codes] - self.scale = nn.Parameter( - torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), - requires_grad=True) - - @staticmethod - def scaled_l2(x, codewords, scale): - num_codes, channels = codewords.size() - batch_size = x.size(0) - reshaped_scale = scale.view((1, 1, num_codes)) - expanded_x = x.unsqueeze(2).expand( - (batch_size, x.size(1), num_codes, channels)) - reshaped_codewords = codewords.view((1, 1, num_codes, channels)) - - scaled_l2_norm = reshaped_scale * ( - expanded_x - reshaped_codewords).pow(2).sum(dim=3) - return scaled_l2_norm - - @staticmethod - def aggregate(assignment_weights, x, codewords): - num_codes, channels = codewords.size() - reshaped_codewords = codewords.view((1, 1, num_codes, channels)) - batch_size = x.size(0) - - expanded_x = x.unsqueeze(2).expand( - (batch_size, x.size(1), num_codes, channels)) - encoded_feat = (assignment_weights.unsqueeze(3) * - (expanded_x - reshaped_codewords)).sum(dim=1) - return encoded_feat - - def forward(self, x): - assert x.dim() == 4 and x.size(1) == self.channels - # [batch_size, channels, height, width] - batch_size = x.size(0) - # [batch_size, height x width, channels] - x = x.view(batch_size, self.channels, -1).transpose(1, 2).contiguous() - # assignment_weights: [batch_size, channels, num_codes] - assignment_weights = F.softmax( - self.scaled_l2(x, self.codewords, self.scale), dim=2) - # aggregate - encoded_feat = self.aggregate(assignment_weights, x, self.codewords) - return encoded_feat - - def __repr__(self): - repr_str = self.__class__.__name__ - repr_str += f'(Nx{self.channels}xHxW =>Nx{self.num_codes}' \ - f'x{self.channels})' - return repr_str diff --git a/mmseg/ops/wrappers.py b/mmseg/ops/wrappers.py deleted file mode 100644 index ce67e4beb..000000000 --- a/mmseg/ops/wrappers.py +++ /dev/null @@ -1,51 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import warnings - -import torch.nn as nn -import torch.nn.functional as F - - -def resize(input, - size=None, - scale_factor=None, - mode='nearest', - align_corners=None, - warning=True): - if warning: - if size is not None and align_corners: - input_h, input_w = tuple(int(x) for x in input.shape[2:]) - output_h, output_w = tuple(int(x) for x in size) - if output_h > input_h or output_w > output_h: - if ((output_h > 1 and output_w > 1 and input_h > 1 - and input_w > 1) and (output_h - 1) % (input_h - 1) - and (output_w - 1) % (input_w - 1)): - warnings.warn( - f'When align_corners={align_corners}, ' - 'the output would more aligned if ' - f'input size {(input_h, input_w)} is `x+1` and ' - f'out size {(output_h, output_w)} is `nx+1`') - return F.interpolate(input, size, scale_factor, mode, align_corners) - - -class Upsample(nn.Module): - - def __init__(self, - size=None, - scale_factor=None, - mode='nearest', - align_corners=None): - super(Upsample, self).__init__() - self.size = size - if isinstance(scale_factor, tuple): - self.scale_factor = tuple(float(factor) for factor in scale_factor) - else: - self.scale_factor = float(scale_factor) if scale_factor else None - self.mode = mode - self.align_corners = align_corners - - def forward(self, x): - if not self.size: - size = [int(t * self.scale_factor) for t in x.shape[-2:]] - else: - size = self.size - return resize(x, size, None, self.mode, self.align_corners)