Commit Graph

188 Commits (test-1.2.0)

Author SHA1 Message Date
谢昕辰 2b3d91a76e
[Dev] add san metafile (#3353) 2023-09-26 18:39:21 +08:00
angiecao 608e319eb6
[Feature] Support Side Adapter Network (#3232)
## Motivation
Support SAN for Open-Vocabulary Semantic Segmentation
Paper: [Side Adapter Network for Open-Vocabulary Semantic
Segmentation](https://arxiv.org/abs/2302.12242)
official Code: [SAN](https://github.com/MendelXu/SAN)

## Modification
- Added the parameters of backbone vit for implementing the image
encoder of CLIP.
- Added text encoder code.
- Added segmentor multimodel encoder-decoder code for open-vocabulary
semantic segmentation.
- Added SideAdapterNetwork decode head code.
- Added config files for train and inference.
- Added tools for converting pretrained models.
- Added loss implementation for mask classification model, such as SAN,
Maskformer and remove dependency on mmdetection.
- Added test units for text encoder, multimodel encoder-decoder, san
decode head and hungarian_assigner.

## Use cases
### Convert Models
**pretrained SAN model**
The official pretrained model can be downloaded from
[san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth)
and
[san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth).
Use tools/model_converters/san2mmseg.py to convert offcial model into
mmseg style.
`python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>`

**pretrained CLIP model**
Use the CLIP model provided by openai to train SAN. The CLIP model can
be download from
[ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt)
and
[ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt).
Use tools/model_converters/clip2mmseg.py to convert model into mmseg
style.
`python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>`

### Inference
test san_vit-base-16 model on coco-stuff164k dataset
`python tools/test.py
./configs/san/san-vit-b16_coco-stuff164k-640x640.py
<TRAINED_MODEL_PATH>`

### Train
test san_vit-base-16 model on coco-stuff164k dataset
`python tools/train.py
./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options
model.pretrained=<PRETRAINED_MODEL_PATH>`

## Comparision Results
### Train on COCO-Stuff164k
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 41.93 | 56.73 | 67.69 |
|                 | mmseg | 41.93 | 56.84 | 67.84 |
| san-vit-large14 | official  | 45.57 | 59.52 | 69.76 |
|                 | mmseg | 45.78 | 59.61 | 69.21 |

### Evaluate on Pascal Context
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 54.05 | 72.96 | 77.77 |
|                 | mmseg | 54.04 | 73.74 | 77.71 |
| san-vit-large14 | official  | 57.53 | 77.56 | 78.89 |
|                 | mmseg | 56.89 | 76.96 | 78.74 |

### Evaluate on Voc12Aug
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 93.86 | 96.61 | 97.11 |
|                 | mmseg | 94.58 | 97.01 | 97.38 |
| san-vit-large14 | official  | 95.17 | 97.61 | 97.63 |
|                 | mmseg | 95.58 | 97.75 | 97.79 |

---------

Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com>
Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com>
Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com>
Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com>
Co-authored-by: xiexinch <xiexinch@outlook.com>
Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
2023-09-20 21:20:26 +08:00
Peng Lu 743171ddef
[Feature] Support inference and visualization of VPD (#3331)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Support inference and visualization of VPD

## Modification

1. add a new VPD model that does not generate black border in
predictions
2. update `SegLocalVisualizer` to support depth visualization
3. update `MMSegInferencer` to support save predictions of depth
estimation in method `postprocess`

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

Run inference with VPD using the this command

```sh
python demo/image_demo_with_inferencer.py demo/classroom__rgb_00283.jpg vpd_depth --out-dir vis_results
```

The following image will be saved under `vis_results/vis`


![classroom__rgb_00283](https://github.com/open-mmlab/mmsegmentation/assets/26127467/051e8c4b-8f92-495f-8c3e-f249aac888e3)




## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
4. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
5. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
6. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-09-18 20:27:24 +08:00
Peng Lu 2b3d3d0603
[Fix] Fix training of VPD model (#3323) 2023-09-15 09:39:33 +08:00
Peng Lu c46cc85cba
[Feature] Support VPD Depth Estimator (#3321)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation


Support depth estimation algorithm [VPD](https://github.com/wl-zhao/VPD)

## Modification

1. add VPD backbone
2. add VPD decoder head for depth estimation
3. add a new segmentor `DepthEstimator` based on `EncoderDecoder` for
depth estimation
4. add an integrated metric that calculate common metrics in depth
estimation
5. add SiLog loss for depth estimation 
6. add config for VPD 

## BC-breaking (Optional)

Does the modification introduce changes that break the
backward-compatibility of the downstream repos?
If so, please describe how it breaks the compatibility and how the
downstream projects should modify their code to keep compatibility with
this PR.

## Use cases (Optional)

If this PR introduces a new feature, it is better to list some use cases
here, and update the documentation.

## Checklist

1. Pre-commit or other linting tools are used to fix the potential lint
issues.
7. The modification is covered by complete unit tests. If not, please
add more unit test to ensure the correctness.
8. If the modification has potential influence on downstream projects,
this PR should be tested with downstream projects, like MMDet or
MMDet3D.
9. The documentation has been modified accordingly, like docstring or
example tutorials.
2023-09-13 15:31:22 +08:00
谢昕辰 5fc197900f
[Fix] Update ddrnet readme (#3198) 2023-07-14 11:16:16 +08:00
CastleDream 057155d3ab
[Feature] add bdd100K datasets (#3158)
## Motivation
Integrate [BDD100K](https://paperswithcode.com/dataset/bdd100k) dataset.
It shares the same classes as Cityscapes, and it's commonly used for
evaluating segmentation/detection tasks in driving scenes, such as in
[RobustNet](https://arxiv.org/abs/2103.15597),
[WildNet](https://github.com/suhyeonlee/WildNet).

Enhancement for Add BDD100K Dataset #2808

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-07-14 10:09:16 +08:00
谢昕辰 067a95e40b
[Fix] fix mim search error (#3194) 2023-07-13 16:26:08 +08:00
OliverGrace ac78b1308d
[Fix] Fix train map path for coco-stuff164k.py (#3187) 2023-07-12 15:29:45 +08:00
谢昕辰 e4c1865a82
Bump1.1 (#3140)
Co-authored-by: CSH <40987381+csatsurnh@users.noreply.github.com>
2023-07-04 11:11:30 +08:00
谢昕辰 cc74c5c3fe
[Enhancement] update segformer default pretrain to configs (#3153) 2023-06-30 16:40:13 +08:00
谢昕辰 ffb7e2e239
[Fix] Fix dependency (#3136)
## Motivation

Change the dependency `mmcls` to `mmpretrain`

## Modification

- modify `mmcls` to `mmpretrain`
- modify CI requirements

## BC-breaking (Optional)

If users have installed mmcls but not install mmpretrain, it might raise some error.
2023-06-26 16:02:37 +08:00
WuFan b89c2c4cb7
[Feature] Support DSDL Dataset (#2925)
- support dsdl seg dataset 
- add dsdl dataset citest
- validated accuracy on voc2012 and cityscapes
2023-05-10 16:54:42 +08:00
zoulinxin 77591b9e7b
[Feature] Add GDAL backend and Support LEVIR-CD Dataset (#2903)
## Motivation

For support with reading multiple remote sensing image formats, please
refer to https://gdal.org/drivers/raster/index.html.

Byte, UInt16, Int16, UInt32, Int32, Float32, Float64, CInt16, CInt32,
CFloat32 and CFloat64 are supported for reading and writing.

Support input of two images for change detection tasks, and support the
LEVIR-CD dataset.

## Modification

Add LoadSingleRSImageFromFile in 'mmseg/datasets/transforms/loading.py'.
Load a single remote sensing image for object segmentation tasks.

Add LoadMultipleRSImageFromFile in
'mmseg/datasets/transforms/loading.py'.
Load two remote sensing images for change detection tasks.

Add ConcatCDInput  in 'mmseg/datasets/transforms/transforms.py'.
Combine images that have been separately augmented for data enhancement.

Add BaseCDDataset in 'mmseg/datasets/basesegdataset.py'
Base class for datasets used in change detection tasks.

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-05-08 20:09:33 +08:00
MengzhangLI 65b63cca99
[Fix] Fix DDRNet readme (#2981)
Ref: https://github.com/ydhongHIT/DDRNet#citation

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-05-06 16:09:28 +08:00
Pan Zhang 990063e59b
[Feature] Support DDRNet (#2855)
Thanks for your contribution and we appreciate it a lot. The following
instructions would make your pull request more healthy and more easily
get feedback. If you do not understand some items, don't worry, just
make the pull request and seek help from maintainers.

## Motivation

Support DDRNet
Paper: [Deep Dual-resolution Networks for Real-time and Accurate
Semantic Segmentation of Road Scenes](https://arxiv.org/pdf/2101.06085)
official Code: https://github.com/ydhongHIT/DDRNet


There is already a PR
https://github.com/open-mmlab/mmsegmentation/pull/1722 , but it has been
inactive for a long time.

## Current Result

### Cityscapes

#### inference with converted official weights

| Method | Backbone      | mIoU(official) | mIoU(converted weight) |
| ------ | ------------- | -------------- | ---------------------- |
| DDRNet | DDRNet23-slim | 77.8           | 77.84                  |
| DDRNet | DDRNet23 | 79.5 | 79.53 |

#### training with converted pretrained backbone

| Method | Backbone | Crop Size | Lr schd | Inf time(fps) | Device |
mIoU | mIoU(ms+flip) | config | download |
| ------ | ------------- | --------- | ------- | ------- | -------- |
----- | ------------- | ------------ | ------------ |
| DDRNet | DDRNet23-slim | 1024x1024 | 120000 | 85.85 | RTX 8000 | 77.85
| 79.80 |
[config](https://github.com/whu-pzhang/mmsegmentation/blob/ddrnet/configs/ddrnet/ddrnet_23-slim_in1k-pre_2xb6-120k_cityscapes-1024x1024.py)
| model \| log |
| DDRNet | DDRNet23 | 1024x1024 | 120000 | 33.41 | RTX 8000 | 79.53 |
80.98 |
[config](https://github.com/whu-pzhang/mmsegmentation/blob/ddrnet/configs/ddrnet/ddrnet_23_in1k-pre_2xb6-120k_cityscapes-1024x1024.py)
| model \| log |


The converted pretrained backbone weights download link:

1.
[ddrnet23s_in1k_mmseg.pth](https://drive.google.com/file/d/1Ni4F1PMGGjuld-1S9fzDTmneLfpMuPTG/view?usp=sharing)
2.
[ddrnet23_in1k_mmseg.pth](https://drive.google.com/file/d/11rsijC1xOWB6B0LgNQkAG-W6e1OdbCyJ/view?usp=sharing)

## To do

- [x] support inference with converted official weights
- [x] support training on cityscapes dataset

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-04-27 09:44:30 +08:00
谢昕辰 c448646a92
[Doc] Refine doc and fix links (#2821)
## Motivation

- Create the `main` branch

## Modification

Modify links from `dev-1.x` to `main`
2023-03-31 16:26:30 +08:00
谢昕辰 f6de1aad81
[Dev] update update-model-index pre-commit hook (#2667) 2023-03-17 19:12:58 +08:00
Haolan He 6d63e77600
[Docs] add deeplabv3 model structure (#2426)
as title
2023-03-17 17:35:38 +08:00
MengzhangLI ff8d971988
[Feature] Support SegNeXt in MMSegmentation 2.0 (#2654)
## Motivation

Support SegNeXt in MMSeg 1.x branch.

0.x PR: https://github.com/open-mmlab/mmsegmentation/pull/2600

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-03-16 16:49:15 +08:00
谢昕辰 dd47cef801
[Feature] Support PIDNet (#2609)
## Motivation

Support SOTA real-time semantic segmentation method in [Paper with
code](https://paperswithcode.com/task/real-time-semantic-segmentation)

Paper: https://arxiv.org/pdf/2206.02066.pdf
Official repo: https://github.com/XuJiacong/PIDNet

## Current results

**Cityscapes**

|Model|Ref mIoU|mIoU (ours)|
|---|---|---|
|PIDNet-S|78.8|78.74|
|PIDNet-M|79.9|80.22|
|PIDNet-L|80.9|80.89|

## TODO

- [x] Support inference with official weights
- [x] Support training on Cityscapes
- [x] Update docstring
- [x] Add unit test
2023-03-15 14:55:30 +08:00
Tianlong Ai 8c89ff3dd1
[Datasets] Add Mapillary Vistas Datasets to MMSeg Core Package. (#2576)
## [Datasets] Add Mapillary Vistas Datasets to MMSeg Core Package .
## Motivation
Add Mapillary Vistas Datasets to core package.
Old PR #2484 

## Modification
- Add Mapillary Vistas Datasets to core package.
- Delete `tools/datasets_convert/mapillary.py` , dataset does't need
converting.
- Add `schedule_240k.py`  config.
- Add configs files.  
  ```none
  deeplabv3plus_r101-d8_4xb2-240k_mapillay_v1-512x1024.py
  deeplabv3plus_r101-d8_4xb2-240k_mapillay_v2-512x1024.py
  maskformer_swin-s_4xb2-240k_mapillary_v1-512x1024.py
  maskformer_swin-s_4xb2-240k_mapillary_v2-512x1024.py
  maskformer_r101-d8_4xb2-240k_mapillary_v1-512x1024.py
  maskformer_r101-d8_4xb2-240k_mapillary_v2-512x1024.py
  pspnet_r101-d8_4xb2-240k_mapillay_v1-512x1024.py
  pspnet_r101-d8_4xb2-240k_mapillay_v2-512x1024.py
  ```
- Synchronized changes to `projects/mapillary_datasets`

---------

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-03-15 14:44:38 +08:00
谢昕辰 19f92851f5
[Fix] Add out_channels in `CascadeEncoderDecoder` and update OCRNet and MobileNet v2 results (#2656)
## Motivation

As title.

## Modification

1. update results in readme
2. fix attr error in cascade encoder decoder
2023-02-28 15:57:43 +08:00
谢昕辰 039ba5d4ca
[Feature] Support auto import modules from registry. (#2481)
## Motivation

The registry now supports auto-import modules from the given location.

register_all_modules before running is no longer needed. The modules
will be lazy-imported during building.

- [x] This PR can be merged after
https://github.com/open-mmlab/mmengine/pull/643. The MMEngine version
should be updated.

Ref: https://github.com/open-mmlab/mmdetection/pull/9143
2023-02-23 20:33:17 +08:00
谢昕辰 a947e3e754
[FIx] Set default `backend_args` values to None (#2597)
## Motivation

In MMEngine >= 0.2.0, it might directly determine what the backend is by
using the `data_root` path.

## Modification

Set all default `backend_args` values are `None`.
2023-02-16 15:33:52 +08:00
Andrew Lau 49b062e365
CodeCamp #139 [Feature] Support REFUGE dataset. (#2554)
## Motivation 
Add REFUGE datasets
Old PR: https://github.com/open-mmlab/mmsegmentation/pull/2420

---------

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
2023-02-03 16:02:19 +08:00
Qingyun a092fea8c1
[Fix] Fix MaskFormer and Mask2Former of MMSegmentation (#2532)
## Motivation

The DETR-related modules have been refactored in
open-mmlab/mmdetection#8763, which causes breakings of MaskFormer and
Mask2Former in both MMDetection (has been fixed in
open-mmlab/mmdetection#9515) and MMSegmentation. This pr fix the bugs in
MMSegmentation.

### TO-DO List

- [x] update configs
- [x] check and modify data flow
- [x] fix unit test
- [x] aligning inference
- [x] write a ckpt converter
- [x] write ckpt update script
- [x] update model zoo
- [x] update model link in readme
- [x] update
[faq.md](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/notes/faq.md#installation)

## Tips of Fixing other implementations based on MaskXFormer of mmseg

1. The Transformer modules should be built directly. The original
building with register manner has been refactored.
2. The config requires to be modified. Delete `type` and modify several
keys, according to the modifications in this pr.
3. The `batch_first` is set `True` uniformly in the new implementations.
Hence the data flow requires to be transposed and config of
`batch_first` needs to be modified.
4. The checkpoint trained on the old implementation should be converted
to be used in the new one.

### Convert script

```Python
import argparse
from copy import deepcopy
from collections import OrderedDict

import torch

from mmengine.config import Config
from mmseg.models import build_segmentor
from mmseg.utils import register_all_modules
register_all_modules(init_default_scope=True)


def parse_args():
    parser = argparse.ArgumentParser(
        description='MMSeg convert MaskXFormer model, by Li-Qingyun')
    parser.add_argument('Mask_what_former', type=int,
                        help='Mask what former, can be a `1` or `2`',
                        choices=[1, 2])
    parser.add_argument('CFG_FILE', help='config file path')
    parser.add_argument('OLD_CKPT_FILEPATH', help='old ckpt file path')
    parser.add_argument('NEW_CKPT_FILEPATH', help='new ckpt file path')
    args = parser.parse_args()
    return args


args = parse_args()

def get_new_name(old_name: str):
    new_name = old_name

    if 'encoder.layers' in new_name:
        new_name = new_name.replace('attentions.0', 'self_attn')

    new_name = new_name.replace('ffns.0', 'ffn')

    if 'decoder.layers' in new_name:

        if args.Mask_what_former == 2:
            # for Mask2Former
            new_name = new_name.replace('attentions.0', 'cross_attn')
            new_name = new_name.replace('attentions.1', 'self_attn')
        else:
            # for Mask2Former
            new_name = new_name.replace('attentions.0', 'self_attn')
            new_name = new_name.replace('attentions.1', 'cross_attn')

    return new_name
    
def cvt_sd(old_sd: OrderedDict):
    new_sd = OrderedDict()
    for name, param in old_sd.items():
        new_name = get_new_name(name)
        assert new_name not in new_sd
        new_sd[new_name] = param
    assert len(new_sd) == len(old_sd)
    return new_sd
    
if __name__ == '__main__':
    cfg = Config.fromfile(args.CFG_FILE)
    model_cfg = cfg.model

    segmentor = build_segmentor(model_cfg)

    refer_sd = segmentor.state_dict()
    old_ckpt = torch.load(args.OLD_CKPT_FILEPATH)
    old_sd = old_ckpt['state_dict']

    new_sd = cvt_sd(old_sd)
    print(segmentor.load_state_dict(new_sd))

    new_ckpt = deepcopy(old_ckpt)
    new_ckpt['state_dict'] = new_sd
    torch.save(new_ckpt, args.NEW_CKPT_FILEPATH)
    print(f'{args.NEW_CKPT_FILEPATH} has been saved!')
```

Usage:
```bash
# for example
python ckpt4pr2532.py 1 configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py original_ckpts/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-cbd39cc1.pth cvt_outputs/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.pth
python ckpt4pr2532.py 2 configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py original_ckpts/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-4c62652d.pth cvt_outputs/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.pth
```

---------

Co-authored-by: MeowZheng <meowzheng@outlook.com>
2023-02-01 18:58:21 +08:00
谢昕辰 124b87ce90
[Refactor] Refactor fileio (#2543)
## Motivation

Use the new fileio from mmengine
https://github.com/open-mmlab/mmengine/pull/533

## Modification

1. Use `mmengine.fileio` to repalce FileClient  in mmseg/datasets
2. Use `mmengine.fileio` to repalce FileClient in
mmseg/datasets/transforms
3. Use `mmengine.fileio` to repalce FileClient in mmseg/visualization

## BC-breaking (Optional)

we modify all the dataset configurations, so please use the latest config file.
2023-02-01 17:53:22 +08:00
MengzhangLI 67b5dfa699
[Fix] Fix ERFNet URL in dev-1.x branch (#2537) 2023-01-31 17:25:56 +08:00
王永韬 2d67e51db3
CodeCamp #140 [New] [Feature] Add synapse dataset and data augmentation in dev-1.x. (#2432)
## Motivation

Add Synapse dataset in MMSegmentation.
Old PR: https://github.com/open-mmlab/mmsegmentation/pull/2372.
2023-01-06 16:14:54 +08:00
谢昕辰 da4125587e [Refactor] Support TTA (#2184)
* tta init

* use mmcv transform

* test city

* add multiscale

* fix merge

* add softmax to post process

* add ut

* add tta pipeline to other datasets

* remove softmax

* add encoder_decoder_tta ut

* add encoder_decoder_tta ut

* rename

* rename file

* rename config

* rm aug_test

* move flip to post process

* fix channel
2022-12-30 22:52:07 +08:00
haofeng 20a6c58478 add pspnet model structure graph (#2437) 2022-12-30 22:52:07 +08:00
谢昕辰 163277bfe0
[Feature] Support Mask2former in MMSeg 1.x (#2255)
* init commits

* fix crop size

* add seg_data2instance_data method

* add ut and update requirement

* update configs and readme

* add model-indel

* update optional requirements

* fix results

* fix lint error

* update results

* update results

* remove mmdet from requirements/optional.txt

* use try import and update README

* add docstring to overwrtied method

* minor change

Co-authored-by: MengzhangLI <mcmong@pku.edu.cn>
2022-12-05 18:34:24 +08:00
MengzhangLI 933e4d3cb6
[Feature] Support MaskFormer(NeurIPS'2021) in MMSeg 1.x (#2215)
* [Feature] Support MaskFormer(NeurIPS'2021) in MMSeg 1.x

* add mmdet try except logic

* refactor config files

* add readme

* fix config

* update models & logs

* add MMDET installation and fix info

* fix comments

* fix

* fix config norm optimizer setting

* update models & logs & unittest

* add docstring of MaskFormerHead

* wait for mmdet 3.0.0rc4

* replace seg_mask with seg_logits & add docstring for batch_input_shape

* use mmdet3.0.0rc4

* fix readme and modify config comments

* add mmdet installation in pr_stage_test.yml

* update mmcv version in pr_stage_test.yml

* add mmdet in build_cpu of pr_stage_test.yml

* modify mmdet& mmcv installation in merge_stage_test.yml

* fix typo

* update test.yml

* update test.yml
2022-12-01 19:03:10 +08:00
谢昕辰 a6a5a50518
modify results (#2113) 2022-10-27 13:07:53 +08:00
MengzhangLI 25604a151b
[Feature] Support PoolFormer in MMSegmentation 2.0 (#2191)
* [Feature] 2.0 PoolFormer

* fix mmcls version

* fix ut error

* fix ut

* fix ut
2022-10-19 13:08:07 +08:00
Miao Zheng e8af7a0ed0
[Fix]Use syncbn in mobilenet_v2 (#2198) 2022-10-18 17:19:37 +08:00
MengzhangLI f3cd44bebf
[Fix] Fix ResizeToMultiple transform in MMSeg 1.x (#2185) 2022-10-14 15:37:35 +08:00
MengzhangLI 0097dfbabc
[Fix] Fix segmenter-vit-s_fcn config (#2037) 2022-09-14 22:31:39 +08:00
MengzhangLI bd1097ac02
[Fix] Fix several config file errors in 2.0 (New) (#1994)
* [Fix] Fix several config file errors in 2.0

* change _base_ config file name in configs
2022-08-30 20:20:05 +08:00
Miao Zheng adec7f2d65
[Fix] Add `by_epoch=False` for log processor (#1987) 2022-08-29 12:05:58 +08:00
Miao Zheng c5bcf9991b
[Fix] batch size for citys in cfg file name (#1977) 2022-08-26 20:49:43 +08:00
谢昕辰 a3a144a361
[Refactor] Update config names (#1964)
* rename ann configs

* update ann yml

* update

* update

* update

* update

* update

* update ann readme

* update

* update deeplabv3

* update readme

* fix yml

* fix beit
2022-08-26 18:48:56 +08:00
谢昕辰 03405dcbb6 fix logger cfg (#1894) 2022-08-19 20:50:03 +08:00
Miao Zheng c498e6f593
[Fix] Add SegVisualizationHook in default hooks (#1900) 2022-08-09 23:33:04 +08:00
Miao Zheng 78b08650b5
[Fix] Default hooks in cgnet config (#1897) 2022-08-09 20:26:05 +08:00
MengzhangLI e4b9d72a11
[Fix] 2.0 Fix mDice metric for medical datasets (#1864) 2022-08-04 18:32:52 +08:00
MengzhangLI 7369d50049
[Fix] Fix SegLocalVisualizer gt_sem_seg cuda tensor error (#1845)
* [Fix] Fix SegLocalVisualizer gt_sem_seg cuda tensor error

* fix ut error and add config visualizer dict

* fix ut error
2022-08-01 15:03:01 +08:00
xiexinchen.vendor 5b41431511 [Fix] Fix optim wrapper configs 2022-07-14 01:49:52 +00:00
zhengmiao a63f77d249 Merge branch 'xiexinchen/fix_optim_config' into 'refactor_dev'
[Fix] Fix mae/dpt optimizer config error

See merge request openmmlab-enterprise/openmmlab-ce/mmsegmentation!58
2022-07-07 11:04:10 +00:00