Commit Graph

4 Commits (1471d1e529f7887659bd9f2414c990763b3f95b2)

Author SHA1 Message Date
谢昕辰 c448646a92
[Doc] Refine doc and fix links (#2821)
## Motivation

- Create the `main` branch

## Modification

Modify links from `dev-1.x` to `main`
2023-03-31 16:26:30 +08:00
谢昕辰 f6de1aad81
[Dev] update update-model-index pre-commit hook (#2667) 2023-03-17 19:12:58 +08:00
Qingyun a092fea8c1
[Fix] Fix MaskFormer and Mask2Former of MMSegmentation (#2532)
## Motivation

The DETR-related modules have been refactored in
open-mmlab/mmdetection#8763, which causes breakings of MaskFormer and
Mask2Former in both MMDetection (has been fixed in
open-mmlab/mmdetection#9515) and MMSegmentation. This pr fix the bugs in
MMSegmentation.

### TO-DO List

- [x] update configs
- [x] check and modify data flow
- [x] fix unit test
- [x] aligning inference
- [x] write a ckpt converter
- [x] write ckpt update script
- [x] update model zoo
- [x] update model link in readme
- [x] update
[faq.md](https://github.com/open-mmlab/mmsegmentation/blob/dev-1.x/docs/en/notes/faq.md#installation)

## Tips of Fixing other implementations based on MaskXFormer of mmseg

1. The Transformer modules should be built directly. The original
building with register manner has been refactored.
2. The config requires to be modified. Delete `type` and modify several
keys, according to the modifications in this pr.
3. The `batch_first` is set `True` uniformly in the new implementations.
Hence the data flow requires to be transposed and config of
`batch_first` needs to be modified.
4. The checkpoint trained on the old implementation should be converted
to be used in the new one.

### Convert script

```Python
import argparse
from copy import deepcopy
from collections import OrderedDict

import torch

from mmengine.config import Config
from mmseg.models import build_segmentor
from mmseg.utils import register_all_modules
register_all_modules(init_default_scope=True)


def parse_args():
    parser = argparse.ArgumentParser(
        description='MMSeg convert MaskXFormer model, by Li-Qingyun')
    parser.add_argument('Mask_what_former', type=int,
                        help='Mask what former, can be a `1` or `2`',
                        choices=[1, 2])
    parser.add_argument('CFG_FILE', help='config file path')
    parser.add_argument('OLD_CKPT_FILEPATH', help='old ckpt file path')
    parser.add_argument('NEW_CKPT_FILEPATH', help='new ckpt file path')
    args = parser.parse_args()
    return args


args = parse_args()

def get_new_name(old_name: str):
    new_name = old_name

    if 'encoder.layers' in new_name:
        new_name = new_name.replace('attentions.0', 'self_attn')

    new_name = new_name.replace('ffns.0', 'ffn')

    if 'decoder.layers' in new_name:

        if args.Mask_what_former == 2:
            # for Mask2Former
            new_name = new_name.replace('attentions.0', 'cross_attn')
            new_name = new_name.replace('attentions.1', 'self_attn')
        else:
            # for Mask2Former
            new_name = new_name.replace('attentions.0', 'self_attn')
            new_name = new_name.replace('attentions.1', 'cross_attn')

    return new_name
    
def cvt_sd(old_sd: OrderedDict):
    new_sd = OrderedDict()
    for name, param in old_sd.items():
        new_name = get_new_name(name)
        assert new_name not in new_sd
        new_sd[new_name] = param
    assert len(new_sd) == len(old_sd)
    return new_sd
    
if __name__ == '__main__':
    cfg = Config.fromfile(args.CFG_FILE)
    model_cfg = cfg.model

    segmentor = build_segmentor(model_cfg)

    refer_sd = segmentor.state_dict()
    old_ckpt = torch.load(args.OLD_CKPT_FILEPATH)
    old_sd = old_ckpt['state_dict']

    new_sd = cvt_sd(old_sd)
    print(segmentor.load_state_dict(new_sd))

    new_ckpt = deepcopy(old_ckpt)
    new_ckpt['state_dict'] = new_sd
    torch.save(new_ckpt, args.NEW_CKPT_FILEPATH)
    print(f'{args.NEW_CKPT_FILEPATH} has been saved!')
```

Usage:
```bash
# for example
python ckpt4pr2532.py 1 configs/maskformer/maskformer_r50-d32_8xb2-160k_ade20k-512x512.py original_ckpts/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724-cbd39cc1.pth cvt_outputs/maskformer_r50-d32_8xb2-160k_ade20k-512x512_20221030_182724.pth
python ckpt4pr2532.py 2 configs/mask2former/mask2former_r50_8xb2-160k_ade20k-512x512.py original_ckpts/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055-4c62652d.pth cvt_outputs/mask2former_r50_8xb2-160k_ade20k-512x512_20221204_000055.pth
```

---------

Co-authored-by: MeowZheng <meowzheng@outlook.com>
2023-02-01 18:58:21 +08:00
MengzhangLI 933e4d3cb6
[Feature] Support MaskFormer(NeurIPS'2021) in MMSeg 1.x (#2215)
* [Feature] Support MaskFormer(NeurIPS'2021) in MMSeg 1.x

* add mmdet try except logic

* refactor config files

* add readme

* fix config

* update models & logs

* add MMDET installation and fix info

* fix comments

* fix

* fix config norm optimizer setting

* update models & logs & unittest

* add docstring of MaskFormerHead

* wait for mmdet 3.0.0rc4

* replace seg_mask with seg_logits & add docstring for batch_input_shape

* use mmdet3.0.0rc4

* fix readme and modify config comments

* add mmdet installation in pr_stage_test.yml

* update mmcv version in pr_stage_test.yml

* add mmdet in build_cpu of pr_stage_test.yml

* modify mmdet& mmcv installation in merge_stage_test.yml

* fix typo

* update test.yml

* update test.yml
2022-12-01 19:03:10 +08:00