7 Commits

Author SHA1 Message Date
angiecao
608e319eb6
[Feature] Support Side Adapter Network (#3232)
## Motivation
Support SAN for Open-Vocabulary Semantic Segmentation
Paper: [Side Adapter Network for Open-Vocabulary Semantic
Segmentation](https://arxiv.org/abs/2302.12242)
official Code: [SAN](https://github.com/MendelXu/SAN)

## Modification
- Added the parameters of backbone vit for implementing the image
encoder of CLIP.
- Added text encoder code.
- Added segmentor multimodel encoder-decoder code for open-vocabulary
semantic segmentation.
- Added SideAdapterNetwork decode head code.
- Added config files for train and inference.
- Added tools for converting pretrained models.
- Added loss implementation for mask classification model, such as SAN,
Maskformer and remove dependency on mmdetection.
- Added test units for text encoder, multimodel encoder-decoder, san
decode head and hungarian_assigner.

## Use cases
### Convert Models
**pretrained SAN model**
The official pretrained model can be downloaded from
[san_clip_vit_b_16.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_b_16.pth)
and
[san_clip_vit_large_14.pth](https://huggingface.co/Mendel192/san/blob/main/san_vit_large_14.pth).
Use tools/model_converters/san2mmseg.py to convert offcial model into
mmseg style.
`python tools/model_converters/san2mmseg.py <MODEL_PATH> <OUTPUT_PATH>`

**pretrained CLIP model**
Use the CLIP model provided by openai to train SAN. The CLIP model can
be download from
[ViT-B-16.pt](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt)
and
[ViT-L-14-336px.pt](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt).
Use tools/model_converters/clip2mmseg.py to convert model into mmseg
style.
`python tools/model_converters/clip2mmseg.py <MODEL_PATH> <OUTPUT_PATH>`

### Inference
test san_vit-base-16 model on coco-stuff164k dataset
`python tools/test.py
./configs/san/san-vit-b16_coco-stuff164k-640x640.py
<TRAINED_MODEL_PATH>`

### Train
test san_vit-base-16 model on coco-stuff164k dataset
`python tools/train.py
./configs/san/san-vit-b16_coco-stuff164k-640x640.py --cfg-options
model.pretrained=<PRETRAINED_MODEL_PATH>`

## Comparision Results
### Train on COCO-Stuff164k
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 41.93 | 56.73 | 67.69 |
|                 | mmseg | 41.93 | 56.84 | 67.84 |
| san-vit-large14 | official  | 45.57 | 59.52 | 69.76 |
|                 | mmseg | 45.78 | 59.61 | 69.21 |

### Evaluate on Pascal Context
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 54.05 | 72.96 | 77.77 |
|                 | mmseg | 54.04 | 73.74 | 77.71 |
| san-vit-large14 | official  | 57.53 | 77.56 | 78.89 |
|                 | mmseg | 56.89 | 76.96 | 78.74 |

### Evaluate on Voc12Aug
|                 |       | mIoU  | mAcc  | pAcc  |
| --------------- | ----- | ----- | ----- | ----- |
| san-vit-base16  | official  | 93.86 | 96.61 | 97.11 |
|                 | mmseg | 94.58 | 97.01 | 97.38 |
| san-vit-large14 | official  | 95.17 | 97.61 | 97.63 |
|                 | mmseg | 95.58 | 97.75 | 97.79 |

---------

Co-authored-by: CastleDream <35064479+CastleDream@users.noreply.github.com>
Co-authored-by: yeedrag <46050186+yeedrag@users.noreply.github.com>
Co-authored-by: Yang-ChangHui <71805205+Yang-Changhui@users.noreply.github.com>
Co-authored-by: Xu CAO <49406546+SheffieldCao@users.noreply.github.com>
Co-authored-by: xiexinch <xiexinch@outlook.com>
Co-authored-by: 小飞猪 <106524776+ooooo-create@users.noreply.github.com>
2023-09-20 21:20:26 +08:00
CastleDream
057155d3ab
[Feature] add bdd100K datasets (#3158)
## Motivation
Integrate [BDD100K](https://paperswithcode.com/dataset/bdd100k) dataset.
It shares the same classes as Cityscapes, and it's commonly used for
evaluating segmentation/detection tasks in driving scenes, such as in
[RobustNet](https://arxiv.org/abs/2103.15597),
[WildNet](https://github.com/suhyeonlee/WildNet).

Enhancement for Add BDD100K Dataset #2808

---------

Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-07-14 10:09:16 +08:00
Tianlong Ai
8c89ff3dd1
[Datasets] Add Mapillary Vistas Datasets to MMSeg Core Package. (#2576)
## [Datasets] Add Mapillary Vistas Datasets to MMSeg Core Package .
## Motivation
Add Mapillary Vistas Datasets to core package.
Old PR #2484 

## Modification
- Add Mapillary Vistas Datasets to core package.
- Delete `tools/datasets_convert/mapillary.py` , dataset does't need
converting.
- Add `schedule_240k.py`  config.
- Add configs files.  
  ```none
  deeplabv3plus_r101-d8_4xb2-240k_mapillay_v1-512x1024.py
  deeplabv3plus_r101-d8_4xb2-240k_mapillay_v2-512x1024.py
  maskformer_swin-s_4xb2-240k_mapillary_v1-512x1024.py
  maskformer_swin-s_4xb2-240k_mapillary_v2-512x1024.py
  maskformer_r101-d8_4xb2-240k_mapillary_v1-512x1024.py
  maskformer_r101-d8_4xb2-240k_mapillary_v2-512x1024.py
  pspnet_r101-d8_4xb2-240k_mapillay_v1-512x1024.py
  pspnet_r101-d8_4xb2-240k_mapillay_v2-512x1024.py
  ```
- Synchronized changes to `projects/mapillary_datasets`

---------

Co-authored-by: Miao Zheng <76149310+MeowZheng@users.noreply.github.com>
Co-authored-by: xiexinch <xiexinch@outlook.com>
2023-03-15 14:44:38 +08:00
王永韬
2d67e51db3
CodeCamp #140 [New] [Feature] Add synapse dataset and data augmentation in dev-1.x. (#2432)
## Motivation

Add Synapse dataset in MMSegmentation.
Old PR: https://github.com/open-mmlab/mmsegmentation/pull/2372.
2023-01-06 16:14:54 +08:00
Miao Zheng
b21df463d4
[Feature] LIP dataset (#2187)
* [WIP] LIP dataset

* wip

* keep473

* lip dataset prepare

* add ut and test data
2022-10-31 20:47:52 +08:00
Miao Zheng
50546da85c
[Fix]Remove modules from mmcv.runner and mmcv.utils (#1966)
* [WIP] mmcv-clean

* [WIP]Remove modules from mmcv.runner and mmcv.utils

* wip

* fix import mmengine

* remove ut

* loadcheckpoint in mae
2022-08-25 15:15:21 +08:00
zhengmiao
4b76f277a6 [Refactory] MMSegmentation Content 2022-07-15 15:47:29 +00:00