# Structures To unify input and output interfaces between different models and modules, OpenMMLab 2.0 MMEngine defines an abstract data structure, it has implemented basic functions of `Create`, `Read`, `Update`, `Delete`, supported data transferring among different types of devices and tensor-like or dictionary-like operations such as `.cpu()`, `.cuda()`, `.get()` and `.detach()`. More details can be found [here](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/data_element.md). MMSegmentation also follows this interface protocol and defines `SegDataSample` which is used to encapsulate the data of semantic segmentation task. ## Semantic Segmentation Data SegDataSample [SegDataSample](mmseg.structures.SegDataSample) includes three main fields `gt_sem_seg`, `pred_sem_seg` and `seg_logits`, which are used to store the annotation information and prediction results respectively. | Field | Type | Description | | -------------- | ------------------------- | ------------------------------------------ | | gt_sem_seg | [`PixelData`](#pixeldata) | Annotation information. | | pred_instances | [`PixelData`](#pixeldata) | The predicted result. | | seg_logits | [`PixelData`](#pixeldata) | The raw (non-normalized) predicted result. | The following sample code demonstrates the use of `SegDataSample`. ```python import torch from mmengine.structures import PixelData from mmseg.structures import SegDataSample img_meta = dict(img_shape=(4, 4, 3), pad_shape=(4, 4, 3)) data_sample = SegDataSample() # defining gt_segmentations for encapsulate the ground truth data gt_segmentations = PixelData(metainfo=img_meta) gt_segmentations.data = torch.randint(0, 2, (1, 4, 4)) # add and process property in SegDataSample data_sample.gt_sem_seg = gt_segmentations assert 'gt_sem_seg' in data_sample assert 'sem_seg' in data_sample.gt_sem_seg assert 'img_shape' in data_sample.gt_sem_seg.metainfo_keys() print(data_sample.gt_sem_seg.shape) ''' (4, 4) ''' print(data_sample) ''' ) at 0x1c2aae44d60> ''' # delete and change property in SegDataSample data_sample = SegDataSample() gt_segmentations = PixelData(metainfo=img_meta) gt_segmentations.data = torch.randint(0, 2, (1, 4, 4)) data_sample.gt_sem_seg = gt_segmentations data_sample.gt_sem_seg.set_metainfo(dict(img_shape=(4,4,9), pad_shape=(4,4,9))) del data_sample.gt_sem_seg.img_shape # Tensor-like operations data_sample = SegDataSample() gt_segmentations = PixelData(metainfo=img_meta) gt_segmentations.data = torch.randint(0, 2, (1, 4, 4)) cuda_gt_segmentations = gt_segmentations.cuda() cuda_gt_segmentations = gt_segmentations.to('cuda:0') cpu_gt_segmentations = cuda_gt_segmentations.cpu() cpu_gt_segmentations = cuda_gt_segmentations.to('cpu') ``` ## Customize New Property in SegDataSample If you want to customize new property in `SegDataSample`, you may follow [SegDataSample](https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/structures/seg_data_sample.py) below: ```python class SegDataSample(BaseDataElement): ... @property def xxx_property(self) -> xxxData: return self._xxx_property @xxx_property.setter def xxx_property(self, value: xxxData) -> None: self.set_field(value, '_xxx_property', dtype=xxxData) @xxx_property.deleter def xxx_property(self) -> None: del self._xxx_property ``` Then a new property would be added to `SegDataSample`.