# Visualization MMSegmentation 1.x provides convenient ways for monitoring training status or visualizing data and model predictions. ## Training status Monitor MMSegmentation 1.x uses TensorBoard to monitor training status. ### TensorBoard Configuration Install TensorBoard following [official instructions](https://www.tensorflow.org/install) e.g. ```shell pip install tensorboardX pip install future tensorboard ``` Add `TensorboardVisBackend` in `vis_backend` of `visualizer` in `default_runtime.py` config file: ```python vis_backends = [dict(type='LocalVisBackend'), dict(type='TensorboardVisBackend')] visualizer = dict( type='SegLocalVisualizer', vis_backends=vis_backends, name='visualizer') ``` ### Examining scalars in TensorBoard Launch training experiment e.g. ```shell python tools/train.py configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py --work-dir work_dir/test_visual ``` Find the `vis_data` path of `work_dir` after starting training, for example, the vis_data path of this particular test is as follows: ```shell work_dirs/test_visual/20220810_115248/vis_data ``` The scalar file in vis_data path includes learning rate, losses and data_time etc, also record metrics results and you can refer [logging tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html) in MMEngine to log custom data. The tensorboard visualization results are executed with the following command: ```shell tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data ``` ## Data and Results visualization ### Visualizer Data Samples during Model Testing or Validation MMSegmentation provides `SegVisualizationHook` which is a [hook](https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/hook.md) working to visualize ground truth and prediction of segmentation during model testing and evaluation. Its configuration is in `default_hooks`, please see [Runner tutorial](https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/runner.md) for more details. For example, In `_base_/schedules/schedule_20k.py`, modify the `SegVisualizationHook` configuration, set `draw` to `True` to enable the storage of network inference results, `interval` indicates the sampling interval of the prediction results, and when set to 1, each inference result of the network will be saved. `interval` is set to 50 by default: ```python default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='SegVisualizationHook', draw=True, interval=1)) ``` After launch training experiment, visualization results will be stored in the local folder in validation loop, or when launch evaluation a model on one dataset, the prediction results will be store in the local. The stored results of the local visualization are kept in `vis_image` under `$WORK_DIRS/vis_data`, e.g.: ```shell work_dirs/test_visual/20220810_115248/vis_data/vis_image ``` In addition, if `TensorboardVisBackend` is add in `vis_backends`, like [above](#tensorboard-configuration), we can also run the following command to view them in TensorBoard: ```shell tensorboard --logdir work_dirs/test_visual/20220810_115248/vis_data ``` ### Visualize a Single Data Sample If you want to visualize a single data sample, we suggest to use `SegLocalVisualizer`. `SegLocalVisualizer` is child class inherits from `Visualizer` in MMEngine and works for MMSegmentation visualization, for more details about `Visualizer` please refer to [visualization tutorial](https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md) in MMEngine. Here is an example about `SegLocalVisualizer`, first you may download example data below by following commands:
```shell wget https://user-images.githubusercontent.com/24582831/189833109-eddad58f-f777-4fc0-b98a-6bd429143b06.png --output-document aachen_000000_000019_leftImg8bit.png wget https://user-images.githubusercontent.com/24582831/189833143-15f60f8a-4d1e-4cbb-a6e7-5e2233869fac.png --output-document aachen_000000_000019_gtFine_labelTrainIds.png ``` Then you can find their local path and use the scripts below to visualize: ```python import mmcv import os.path as osp import torch # `PixelData` is data structure for pixel-level annotations or predictions defined in MMEngine. # Please refer to below tutorial file of data structures in MMEngine: # https://github.com/open-mmlab/mmengine/tree/main/docs/en/advanced_tutorials/data_element.md from mmengine.structures import PixelData # `SegDataSample` is data structure interface between different components # defined in MMSegmentation, it includes ground truth, prediction and # predicted logits of semantic segmentation. # Please refer to below tutorial file of `SegDataSample` for more details: # https://github.com/open-mmlab/mmsegmentation/blob/1.x/docs/en/advanced_guides/structures.md from mmseg.structures import SegDataSample from mmseg.visualization import SegLocalVisualizer out_file = 'out_file_cityscapes' save_dir = './work_dirs' image = mmcv.imread( osp.join( osp.dirname(__file__), './aachen_000000_000019_leftImg8bit.png' ), 'color') sem_seg = mmcv.imread( osp.join( osp.dirname(__file__), './aachen_000000_000019_gtFine_labelTrainIds.png' # noqa ), 'unchanged') sem_seg = torch.from_numpy(sem_seg) gt_sem_seg_data = dict(data=sem_seg) gt_sem_seg = PixelData(**gt_sem_seg_data) data_sample = SegDataSample() data_sample.gt_sem_seg = gt_sem_seg seg_local_visualizer = SegLocalVisualizer( vis_backends=[dict(type='LocalVisBackend')], save_dir=save_dir) # The meta information of dataset usually includes `classes` for class names and # `palette` for visualization color of each foreground. # All class names and palettes are defined in the file: # https://github.com/open-mmlab/mmsegmentation/blob/1.x/mmseg/utils/class_names.py seg_local_visualizer.dataset_meta = dict( classes=('road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'), palette=[[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]]) # When `show=True`, the results would be shown directly, # else if `show=False`, the results would be saved in local directory folder. seg_local_visualizer.add_datasample(out_file, image, data_sample, show=False) ``` Then the visualization result of image with its corresponding ground truth could be found in `./work_dirs/vis_data/vis_image/` whose name is `out_file_cityscapes_0.png`:
If you would like to know more visualization usage, you can refer to [visualization tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html) in MMEngine.