## Changelog ### V0.8 (03/11/2020) **Highlights** - Support 4 medical dataset, UNet and CGNet. **New Features** - Support customize runner ([#118](https://github.com/open-mmlab/mmsegmentation/pull/118)) - Support UNet ([#161](https://github.com/open-mmlab/mmsegmentation/pull/162)) - Support CHASE_DB1, DRIVE, STARE, HRD ([#203](https://github.com/open-mmlab/mmsegmentation/pull/203)) - Support CGNet ([#223](https://github.com/open-mmlab/mmsegmentation/pull/223)) ### V0.7 (07/10/2020) **Highlights** - Support Pascal Context dataset and customizing class dataset. **Bug Fixes** - Fixed CPU inference ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) **New Features** - Add DeepLab OS16 models ([#154](https://github.com/open-mmlab/mmsegmentation/pull/154)) - Support Pascal Context dataset ([#133](https://github.com/open-mmlab/mmsegmentation/pull/133)) - Support customizing dataset classes ([#71](https://github.com/open-mmlab/mmsegmentation/pull/71)) - Support customizing dataset palette ([#157](https://github.com/open-mmlab/mmsegmentation/pull/157)) **Improvements** - Support 4D tensor output in ONNX ([#150](https://github.com/open-mmlab/mmsegmentation/pull/150)) - Remove redundancies in ONNX export ([#160](https://github.com/open-mmlab/mmsegmentation/pull/160)) - Migrate to MMCV DepthwiseSeparableConv ([#158](https://github.com/open-mmlab/mmsegmentation/pull/158)) - Migrate to MMCV collect_env ([#137](https://github.com/open-mmlab/mmsegmentation/pull/137)) - Use img_prefix and seg_prefix for loading ([#153](https://github.com/open-mmlab/mmsegmentation/pull/153)) ### V0.6 (10/09/2020) **Highlights** - Support new methods i.e. MobileNetV2, EMANet, DNL, PointRend, Semantic FPN, Fast-SCNN, ResNeSt. **Bug Fixes** - Fixed sliding inference ONNX export ([#90](https://github.com/open-mmlab/mmsegmentation/pull/90)) **New Features** - Support MobileNet v2 ([#86](https://github.com/open-mmlab/mmsegmentation/pull/86)) - Support EMANet ([#34](https://github.com/open-mmlab/mmsegmentation/pull/34)) - Support DNL ([#37](https://github.com/open-mmlab/mmsegmentation/pull/37)) - Support PointRend ([#109](https://github.com/open-mmlab/mmsegmentation/pull/109)) - Support Semantic FPN ([#94](https://github.com/open-mmlab/mmsegmentation/pull/94)) - Support Fast-SCNN ([#58](https://github.com/open-mmlab/mmsegmentation/pull/58)) - Support ResNeSt backbone ([#47](https://github.com/open-mmlab/mmsegmentation/pull/47)) - Support ONNX export (experimental) ([#12](https://github.com/open-mmlab/mmsegmentation/pull/12)) **Improvements** - Support Upsample in ONNX ([#100](https://github.com/open-mmlab/mmsegmentation/pull/100)) - Support Windows install (experimental) ([#75](https://github.com/open-mmlab/mmsegmentation/pull/75)) - Add more OCRNet results ([#20](https://github.com/open-mmlab/mmsegmentation/pull/20)) - Add PyTorch 1.6 CI ([#64](https://github.com/open-mmlab/mmsegmentation/pull/64)) - Get version and githash automatically ([#55](https://github.com/open-mmlab/mmsegmentation/pull/55)) ### v0.5.1 (11/08/2020) **Highlights** - Support FP16 and more generalized OHEM **Bug Fixes** - Fixed Pascal VOC conversion script (#19) - Fixed OHEM weight assign bug (#54) - Fixed palette type when palette is not given (#27) **New Features** - Support FP16 (#21) - Generalized OHEM (#54) **Improvements** - Add load-from flag (#33) - Fixed training tricks doc about different learning rates of model (#26)