Collections: - Name: encnet Metadata: Training Data: - Cityscapes - Pascal VOC 2012 + Aug - ADE20K Models: - Name: encnet_r50-d8_512x1024_40k_cityscapes In Collection: encnet Metadata: inference time (fps): 4.58 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.67 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth Config: configs/encnet/encnet_r50-d8_512x1024_40k_cityscapes.py - Name: encnet_r101-d8_512x1024_40k_cityscapes In Collection: encnet Metadata: inference time (fps): 2.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.81 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth Config: configs/encnet/encnet_r101-d8_512x1024_40k_cityscapes.py - Name: encnet_r50-d8_769x769_40k_cityscapes In Collection: encnet Metadata: inference time (fps): 1.82 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.24 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth Config: configs/encnet/encnet_r50-d8_769x769_40k_cityscapes.py - Name: encnet_r101-d8_769x769_40k_cityscapes In Collection: encnet Metadata: inference time (fps): 1.26 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.25 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth Config: configs/encnet/encnet_r101-d8_769x769_40k_cityscapes.py - Name: encnet_r50-d8_512x1024_80k_cityscapes In Collection: encnet Metadata: inference time (fps): 4.58 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.94 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth Config: configs/encnet/encnet_r50-d8_512x1024_80k_cityscapes.py - Name: encnet_r101-d8_512x1024_80k_cityscapes In Collection: encnet Metadata: inference time (fps): 2.66 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.55 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth Config: configs/encnet/encnet_r101-d8_512x1024_80k_cityscapes.py - Name: encnet_r50-d8_769x769_80k_cityscapes In Collection: encnet Metadata: inference time (fps): 1.82 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.44 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth Config: configs/encnet/encnet_r50-d8_769x769_80k_cityscapes.py - Name: encnet_r101-d8_769x769_80k_cityscapes In Collection: encnet Metadata: inference time (fps): 1.26 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.10 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth Config: configs/encnet/encnet_r101-d8_769x769_80k_cityscapes.py - Name: encnet_r50-d8_512x512_80k_ade20k In Collection: encnet Metadata: inference time (fps): 22.81 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.53 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth Config: configs/encnet/encnet_r50-d8_512x512_80k_ade20k.py - Name: encnet_r101-d8_512x512_80k_ade20k In Collection: encnet Metadata: inference time (fps): 14.87 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.11 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth Config: configs/encnet/encnet_r101-d8_512x512_80k_ade20k.py - Name: encnet_r50-d8_512x512_160k_ade20k In Collection: encnet Metadata: inference time (fps): 22.81 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.10 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth Config: configs/encnet/encnet_r50-d8_512x512_160k_ade20k.py - Name: encnet_r101-d8_512x512_160k_ade20k In Collection: encnet Metadata: inference time (fps): 14.87 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.61 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth Config: configs/encnet/encnet_r101-d8_512x512_160k_ade20k.py