# Copyright (c) OpenMMLab. All rights reserved. import copy from typing import Sequence, Tuple, Union import mmcv import numpy as np from mmcv.transforms.base import BaseTransform from mmcv.transforms.utils import cache_randomness from mmcv.utils import is_tuple_of from numpy import random from mmseg.registry import TRANSFORMS @TRANSFORMS.register_module() class ResizeToMultiple(object): """Resize images & seg to multiple of divisor. Args: size_divisor (int): images and gt seg maps need to resize to multiple of size_divisor. Default: 32. interpolation (str, optional): The interpolation mode of image resize. Default: None """ def __init__(self, size_divisor=32, interpolation=None): self.size_divisor = size_divisor self.interpolation = interpolation def __call__(self, results): """Call function to resize images, semantic segmentation map to multiple of size divisor. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape' keys are updated. """ # Align image to multiple of size divisor. img = results['img'] img = mmcv.imresize_to_multiple( img, self.size_divisor, scale_factor=1, interpolation=self.interpolation if self.interpolation else 'bilinear') results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # Align segmentation map to multiple of size divisor. for key in results.get('seg_fields', []): gt_seg = results[key] gt_seg = mmcv.imresize_to_multiple( gt_seg, self.size_divisor, scale_factor=1, interpolation='nearest') results[key] = gt_seg return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(size_divisor={self.size_divisor}, ' f'interpolation={self.interpolation})') return repr_str @TRANSFORMS.register_module() class Rerange(object): """Rerange the image pixel value. Args: min_value (float or int): Minimum value of the reranged image. Default: 0. max_value (float or int): Maximum value of the reranged image. Default: 255. """ def __init__(self, min_value=0, max_value=255): assert isinstance(min_value, float) or isinstance(min_value, int) assert isinstance(max_value, float) or isinstance(max_value, int) assert min_value < max_value self.min_value = min_value self.max_value = max_value def __call__(self, results): """Call function to rerange images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Reranged results. """ img = results['img'] img_min_value = np.min(img) img_max_value = np.max(img) assert img_min_value < img_max_value # rerange to [0, 1] img = (img - img_min_value) / (img_max_value - img_min_value) # rerange to [min_value, max_value] img = img * (self.max_value - self.min_value) + self.min_value results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' return repr_str @TRANSFORMS.register_module() class CLAHE(object): """Use CLAHE method to process the image. See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. Graphics Gems, 1994:474-485.` for more information. Args: clip_limit (float): Threshold for contrast limiting. Default: 40.0. tile_grid_size (tuple[int]): Size of grid for histogram equalization. Input image will be divided into equally sized rectangular tiles. It defines the number of tiles in row and column. Default: (8, 8). """ def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): assert isinstance(clip_limit, (float, int)) self.clip_limit = clip_limit assert is_tuple_of(tile_grid_size, int) assert len(tile_grid_size) == 2 self.tile_grid_size = tile_grid_size def __call__(self, results): """Call function to Use CLAHE method process images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ for i in range(results['img'].shape[2]): results['img'][:, :, i] = mmcv.clahe( np.array(results['img'][:, :, i], dtype=np.uint8), self.clip_limit, self.tile_grid_size) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(clip_limit={self.clip_limit}, '\ f'tile_grid_size={self.tile_grid_size})' return repr_str @TRANSFORMS.register_module() class RandomCrop(BaseTransform): """Random crop the image & seg. Required Keys: - img - gt_semantic_seg Modified Keys: - img - img_shape - gt_semantic_seg Args: crop_size (Union[int, Tuple[int, int]]): Expected size after cropping with the format of (h, w). If set to an integer, then cropping width and height are equal to this integer. cat_max_ratio (float): The maximum ratio that single category could occupy. ignore_index (int): The label index to be ignored. Default: 255 """ def __init__(self, crop_size: Union[int, Tuple[int, int]], cat_max_ratio: float = 1., ignore_index: int = 255): super().__init__() assert isinstance(crop_size, int) or ( isinstance(crop_size, tuple) and len(crop_size) == 2 ), 'The expected crop_size is an integer, or a tuple containing two ' 'intergers' if isinstance(crop_size, int): crop_size = (crop_size, crop_size) assert crop_size[0] > 0 and crop_size[1] > 0 self.crop_size = crop_size self.cat_max_ratio = cat_max_ratio self.ignore_index = ignore_index @cache_randomness def crop_bbox(self, results: dict) -> tuple: """get a crop bounding box. Args: results (dict): Result dict from loading pipeline. Returns: tuple: Coordinates of the cropped image. """ def generate_crop_bbox(img: np.ndarray) -> tuple: """Randomly get a crop bounding box. Args: img (np.ndarray): Original input image. Returns: tuple: Coordinates of the cropped image. """ margin_h = max(img.shape[0] - self.crop_size[0], 0) margin_w = max(img.shape[1] - self.crop_size[1], 0) offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] return crop_y1, crop_y2, crop_x1, crop_x2 img = results['img'] crop_bbox = generate_crop_bbox(img) if self.cat_max_ratio < 1.: # Repeat 10 times for _ in range(10): seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) labels, cnt = np.unique(seg_temp, return_counts=True) cnt = cnt[labels != self.ignore_index] if len(cnt) > 1 and np.max(cnt) / np.sum( cnt) < self.cat_max_ratio: break crop_bbox = generate_crop_bbox(img) return crop_bbox def crop(self, img: np.ndarray, crop_bbox: tuple) -> np.ndarray: """Crop from ``img`` Args: img (np.ndarray): Original input image. crop_bbox (tuple): Coordinates of the cropped image. Returns: np.ndarray: The cropped image. """ crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] return img def transform(self, results: dict) -> dict: """Transform function to randomly crop images, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. """ img = results['img'] crop_bbox = self.crop_bbox(results) # crop the image img = self.crop(img, crop_bbox) img_shape = img.shape results['img'] = img results['img_shape'] = img_shape return results def __repr__(self): return self.__class__.__name__ + f'(crop_size={self.crop_size})' @TRANSFORMS.register_module() class RandomRotate(object): """Rotate the image & seg. Args: prob (float): The rotation probability. degree (float, tuple[float]): Range of degrees to select from. If degree is a number instead of tuple like (min, max), the range of degree will be (``-degree``, ``+degree``) pad_val (float, optional): Padding value of image. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If not specified, the center of the image will be used. Default: None. auto_bound (bool): Whether to adjust the image size to cover the whole rotated image. Default: False """ def __init__(self, prob, degree, pad_val=0, seg_pad_val=255, center=None, auto_bound=False): self.prob = prob assert prob >= 0 and prob <= 1 if isinstance(degree, (float, int)): assert degree > 0, f'degree {degree} should be positive' self.degree = (-degree, degree) else: self.degree = degree assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ f'tuple of (min, max)' self.pal_val = pad_val self.seg_pad_val = seg_pad_val self.center = center self.auto_bound = auto_bound def __call__(self, results): """Call function to rotate image, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Rotated results. """ rotate = True if np.random.rand() < self.prob else False degree = np.random.uniform(min(*self.degree), max(*self.degree)) if rotate: # rotate image results['img'] = mmcv.imrotate( results['img'], angle=degree, border_value=self.pal_val, center=self.center, auto_bound=self.auto_bound) # rotate segs for key in results.get('seg_fields', []): results[key] = mmcv.imrotate( results[key], angle=degree, border_value=self.seg_pad_val, center=self.center, auto_bound=self.auto_bound, interpolation='nearest') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' \ f'degree={self.degree}, ' \ f'pad_val={self.pal_val}, ' \ f'seg_pad_val={self.seg_pad_val}, ' \ f'center={self.center}, ' \ f'auto_bound={self.auto_bound})' return repr_str @TRANSFORMS.register_module() class RGB2Gray(object): """Convert RGB image to grayscale image. This transform calculate the weighted mean of input image channels with ``weights`` and then expand the channels to ``out_channels``. When ``out_channels`` is None, the number of output channels is the same as input channels. Args: out_channels (int): Expected number of output channels after transforming. Default: None. weights (tuple[float]): The weights to calculate the weighted mean. Default: (0.299, 0.587, 0.114). """ def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): assert out_channels is None or out_channels > 0 self.out_channels = out_channels assert isinstance(weights, tuple) for item in weights: assert isinstance(item, (float, int)) self.weights = weights def __call__(self, results): """Call function to convert RGB image to grayscale image. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with grayscale image. """ img = results['img'] assert len(img.shape) == 3 assert img.shape[2] == len(self.weights) weights = np.array(self.weights).reshape((1, 1, -1)) img = (img * weights).sum(2, keepdims=True) if self.out_channels is None: img = img.repeat(weights.shape[2], axis=2) else: img = img.repeat(self.out_channels, axis=2) results['img'] = img results['img_shape'] = img.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(out_channels={self.out_channels}, ' \ f'weights={self.weights})' return repr_str @TRANSFORMS.register_module() class AdjustGamma(object): """Using gamma correction to process the image. Args: gamma (float or int): Gamma value used in gamma correction. Default: 1.0. """ def __init__(self, gamma=1.0): assert isinstance(gamma, float) or isinstance(gamma, int) assert gamma > 0 self.gamma = gamma inv_gamma = 1.0 / gamma self.table = np.array([(i / 255.0)**inv_gamma * 255 for i in np.arange(256)]).astype('uint8') def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ results['img'] = mmcv.lut_transform( np.array(results['img'], dtype=np.uint8), self.table) return results def __repr__(self): return self.__class__.__name__ + f'(gamma={self.gamma})' @TRANSFORMS.register_module() class SegRescale(object): """Rescale semantic segmentation maps. Args: scale_factor (float): The scale factor of the final output. """ def __init__(self, scale_factor=1): self.scale_factor = scale_factor def __call__(self, results): """Call function to scale the semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with semantic segmentation map scaled. """ for key in results.get('seg_fields', []): if self.scale_factor != 1: results[key] = mmcv.imrescale( results[key], self.scale_factor, interpolation='nearest') return results def __repr__(self): return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' @TRANSFORMS.register_module() class PhotoMetricDistortion(BaseTransform): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) Required Keys: - img Modified Keys: - img Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta: int = 32, contrast_range: Sequence[float] = (0.5, 1.5), saturation_range: Sequence[float] = (0.5, 1.5), hue_delta: int = 18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def convert(self, img: np.ndarray, alpha: int = 1, beta: int = 0) -> np.ndarray: """Multiple with alpha and add beat with clip. Args: img (np.ndarray): The input image. alpha (int): Image weights, change the contrast/saturation of the image. Default: 1 beta (int): Image bias, change the brightness of the image. Default: 0 Returns: np.ndarray: The transformed image. """ img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(self, img: np.ndarray) -> np.ndarray: """Brightness distortion. Args: img (np.ndarray): The input image. Returns: np.ndarray: Image after brightness change. """ if random.randint(2): return self.convert( img, beta=random.uniform(-self.brightness_delta, self.brightness_delta)) return img def contrast(self, img: np.ndarray) -> np.ndarray: """Contrast distortion. Args: img (np.ndarray): The input image. Returns: np.ndarray: Image after contrast change. """ if random.randint(2): return self.convert( img, alpha=random.uniform(self.contrast_lower, self.contrast_upper)) return img def saturation(self, img: np.ndarray) -> np.ndarray: """Saturation distortion. Args: img (np.ndarray): The input image. Returns: np.ndarray: Image after saturation change. """ if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 1] = self.convert( img[:, :, 1], alpha=random.uniform(self.saturation_lower, self.saturation_upper)) img = mmcv.hsv2bgr(img) return img def hue(self, img: np.ndarray) -> np.ndarray: """Hue distortion. Args: img (np.ndarray): The input image. Returns: np.ndarray: Image after hue change. """ if random.randint(2): img = mmcv.bgr2hsv(img) img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-self.hue_delta, self.hue_delta)) % 180 img = mmcv.hsv2bgr(img) return img def transform(self, results: dict) -> dict: """Transform function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] # random brightness img = self.brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = self.contrast(img) # random saturation img = self.saturation(img) # random hue img = self.hue(img) # random contrast if mode == 0: img = self.contrast(img) results['img'] = img return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str @TRANSFORMS.register_module() class RandomCutOut(object): """CutOut operation. Randomly drop some regions of image used in `Cutout `_. Args: prob (float): cutout probability. n_holes (int | tuple[int, int]): Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [`n_holes[0]`, `n_holes[1]`]. cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate shape of dropped regions. It can be `tuple[int, int]` to use a fixed cutout shape, or `list[tuple[int, int]]` to randomly choose shape from the list. cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The candidate ratio of dropped regions. It can be `tuple[float, float]` to use a fixed ratio or `list[tuple[float, float]]` to randomly choose ratio from the list. Please note that `cutout_shape` and `cutout_ratio` cannot be both given at the same time. fill_in (tuple[float, float, float] | tuple[int, int, int]): The value of pixel to fill in the dropped regions. Default: (0, 0, 0). seg_fill_in (int): The labels of pixel to fill in the dropped regions. If seg_fill_in is None, skip. Default: None. """ def __init__(self, prob, n_holes, cutout_shape=None, cutout_ratio=None, fill_in=(0, 0, 0), seg_fill_in=None): assert 0 <= prob and prob <= 1 assert (cutout_shape is None) ^ (cutout_ratio is None), \ 'Either cutout_shape or cutout_ratio should be specified.' assert (isinstance(cutout_shape, (list, tuple)) or isinstance(cutout_ratio, (list, tuple))) if isinstance(n_holes, tuple): assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1] else: n_holes = (n_holes, n_holes) if seg_fill_in is not None: assert (isinstance(seg_fill_in, int) and 0 <= seg_fill_in and seg_fill_in <= 255) self.prob = prob self.n_holes = n_holes self.fill_in = fill_in self.seg_fill_in = seg_fill_in self.with_ratio = cutout_ratio is not None self.candidates = cutout_ratio if self.with_ratio else cutout_shape if not isinstance(self.candidates, list): self.candidates = [self.candidates] def __call__(self, results): """Call function to drop some regions of image.""" cutout = True if np.random.rand() < self.prob else False if cutout: h, w, c = results['img'].shape n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1) for _ in range(n_holes): x1 = np.random.randint(0, w) y1 = np.random.randint(0, h) index = np.random.randint(0, len(self.candidates)) if not self.with_ratio: cutout_w, cutout_h = self.candidates[index] else: cutout_w = int(self.candidates[index][0] * w) cutout_h = int(self.candidates[index][1] * h) x2 = np.clip(x1 + cutout_w, 0, w) y2 = np.clip(y1 + cutout_h, 0, h) results['img'][y1:y2, x1:x2, :] = self.fill_in if self.seg_fill_in is not None: for key in results.get('seg_fields', []): results[key][y1:y2, x1:x2] = self.seg_fill_in return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' repr_str += f'n_holes={self.n_holes}, ' repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio else f'cutout_shape={self.candidates}, ') repr_str += f'fill_in={self.fill_in}, ' repr_str += f'seg_fill_in={self.seg_fill_in})' return repr_str @TRANSFORMS.register_module() class RandomMosaic(object): """Mosaic augmentation. Given 4 images, mosaic transform combines them into one output image. The output image is composed of the parts from each sub- image. .. code:: text mosaic transform center_x +------------------------------+ | pad | pad | | +-----------+ | | | | | | | image1 |--------+ | | | | | | | | | image2 | | center_y |----+-------------+-----------| | | cropped | | |pad | image3 | image4 | | | | | +----|-------------+-----------+ | | +-------------+ The mosaic transform steps are as follows: 1. Choose the mosaic center as the intersections of 4 images 2. Get the left top image according to the index, and randomly sample another 3 images from the custom dataset. 3. Sub image will be cropped if image is larger than mosaic patch Args: prob (float): mosaic probability. img_scale (Sequence[int]): Image size after mosaic pipeline of a single image. The size of the output image is four times that of a single image. The output image comprises 4 single images. Default: (640, 640). center_ratio_range (Sequence[float]): Center ratio range of mosaic output. Default: (0.5, 1.5). pad_val (int): Pad value. Default: 0. seg_pad_val (int): Pad value of segmentation map. Default: 255. """ def __init__(self, prob, img_scale=(640, 640), center_ratio_range=(0.5, 1.5), pad_val=0, seg_pad_val=255): assert 0 <= prob and prob <= 1 assert isinstance(img_scale, tuple) self.prob = prob self.img_scale = img_scale self.center_ratio_range = center_ratio_range self.pad_val = pad_val self.seg_pad_val = seg_pad_val def __call__(self, results): """Call function to make a mosaic of image. Args: results (dict): Result dict. Returns: dict: Result dict with mosaic transformed. """ mosaic = True if np.random.rand() < self.prob else False if mosaic: results = self._mosaic_transform_img(results) results = self._mosaic_transform_seg(results) return results def get_indexes(self, dataset): """Call function to collect indexes. Args: dataset (:obj:`MultiImageMixDataset`): The dataset. Returns: list: indexes. """ indexes = [random.randint(0, len(dataset)) for _ in range(3)] return indexes def _mosaic_transform_img(self, results): """Mosaic transform function. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'mix_results' in results if len(results['img'].shape) == 3: mosaic_img = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), 3), self.pad_val, dtype=results['img'].dtype) else: mosaic_img = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), self.pad_val, dtype=results['img'].dtype) # mosaic center x, y self.center_x = int( random.uniform(*self.center_ratio_range) * self.img_scale[1]) self.center_y = int( random.uniform(*self.center_ratio_range) * self.img_scale[0]) center_position = (self.center_x, self.center_y) loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') for i, loc in enumerate(loc_strs): if loc == 'top_left': result_patch = copy.deepcopy(results) else: result_patch = copy.deepcopy(results['mix_results'][i - 1]) img_i = result_patch['img'] h_i, w_i = img_i.shape[:2] # keep_ratio resize scale_ratio_i = min(self.img_scale[0] / h_i, self.img_scale[1] / w_i) img_i = mmcv.imresize( img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i))) # compute the combine parameters paste_coord, crop_coord = self._mosaic_combine( loc, center_position, img_i.shape[:2][::-1]) x1_p, y1_p, x2_p, y2_p = paste_coord x1_c, y1_c, x2_c, y2_c = crop_coord # crop and paste image mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c] results['img'] = mosaic_img results['img_shape'] = mosaic_img.shape results['ori_shape'] = mosaic_img.shape return results def _mosaic_transform_seg(self, results): """Mosaic transform function for label annotations. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'mix_results' in results for key in results.get('seg_fields', []): mosaic_seg = np.full( (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)), self.seg_pad_val, dtype=results[key].dtype) # mosaic center x, y center_position = (self.center_x, self.center_y) loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right') for i, loc in enumerate(loc_strs): if loc == 'top_left': result_patch = copy.deepcopy(results) else: result_patch = copy.deepcopy(results['mix_results'][i - 1]) gt_seg_i = result_patch[key] h_i, w_i = gt_seg_i.shape[:2] # keep_ratio resize scale_ratio_i = min(self.img_scale[0] / h_i, self.img_scale[1] / w_i) gt_seg_i = mmcv.imresize( gt_seg_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)), interpolation='nearest') # compute the combine parameters paste_coord, crop_coord = self._mosaic_combine( loc, center_position, gt_seg_i.shape[:2][::-1]) x1_p, y1_p, x2_p, y2_p = paste_coord x1_c, y1_c, x2_c, y2_c = crop_coord # crop and paste image mosaic_seg[y1_p:y2_p, x1_p:x2_p] = gt_seg_i[y1_c:y2_c, x1_c:x2_c] results[key] = mosaic_seg return results def _mosaic_combine(self, loc, center_position_xy, img_shape_wh): """Calculate global coordinate of mosaic image and local coordinate of cropped sub-image. Args: loc (str): Index for the sub-image, loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right'). center_position_xy (Sequence[float]): Mixing center for 4 images, (x, y). img_shape_wh (Sequence[int]): Width and height of sub-image Returns: tuple[tuple[float]]: Corresponding coordinate of pasting and cropping - paste_coord (tuple): paste corner coordinate in mosaic image. - crop_coord (tuple): crop corner coordinate in mosaic image. """ assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right') if loc == 'top_left': # index0 to top left part of image x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ max(center_position_xy[1] - img_shape_wh[1], 0), \ center_position_xy[0], \ center_position_xy[1] crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - ( y2 - y1), img_shape_wh[0], img_shape_wh[1] elif loc == 'top_right': # index1 to top right part of image x1, y1, x2, y2 = center_position_xy[0], \ max(center_position_xy[1] - img_shape_wh[1], 0), \ min(center_position_xy[0] + img_shape_wh[0], self.img_scale[1] * 2), \ center_position_xy[1] crop_coord = 0, img_shape_wh[1] - (y2 - y1), min( img_shape_wh[0], x2 - x1), img_shape_wh[1] elif loc == 'bottom_left': # index2 to bottom left part of image x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \ center_position_xy[1], \ center_position_xy[0], \ min(self.img_scale[0] * 2, center_position_xy[1] + img_shape_wh[1]) crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min( y2 - y1, img_shape_wh[1]) else: # index3 to bottom right part of image x1, y1, x2, y2 = center_position_xy[0], \ center_position_xy[1], \ min(center_position_xy[0] + img_shape_wh[0], self.img_scale[1] * 2), \ min(self.img_scale[0] * 2, center_position_xy[1] + img_shape_wh[1]) crop_coord = 0, 0, min(img_shape_wh[0], x2 - x1), min(y2 - y1, img_shape_wh[1]) paste_coord = x1, y1, x2, y2 return paste_coord, crop_coord def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' repr_str += f'img_scale={self.img_scale}, ' repr_str += f'center_ratio_range={self.center_ratio_range}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'seg_pad_val={self.pad_val})' return repr_str