_base_ = [ '../_base_/models/bisenetv1_r18-d32.py', '../_base_/datasets/cityscapes_1024x1024.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( type='BiSeNetV1', context_channels=(512, 1024, 2048), spatial_channels=(256, 256, 256, 512), out_channels=1024, backbone_cfg=dict(type='ResNet', depth=50)), decode_head=dict( type='FCNHead', in_channels=1024, in_index=0, channels=1024), auxiliary_head=[ dict( type='FCNHead', in_channels=512, channels=256, num_convs=1, num_classes=19, in_index=1, norm_cfg=norm_cfg, concat_input=False), dict( type='FCNHead', in_channels=512, channels=256, num_convs=1, num_classes=19, in_index=2, norm_cfg=norm_cfg, concat_input=False), ]) lr_config = dict(warmup='linear', warmup_iters=1000) optimizer = dict(lr=0.05) data = dict( samples_per_gpu=4, workers_per_gpu=4, )