Collections: - Name: ann Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/abs/1908.07678 Title: Asymmetric Non-local Neural Networks for Semantic Segmentation README: configs/ann/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ann_head.py#L185 Version: v0.17.0 Converted From: Code: https://github.com/MendelXu/ANN Models: - Name: ann_r50-d8_512x1024_40k_cityscapes In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 269.54 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.4 mIoU(ms+flip): 78.57 Config: configs/ann/ann_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth - Name: ann_r101-d8_512x1024_40k_cityscapes In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 392.16 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.55 mIoU(ms+flip): 78.85 Config: configs/ann/ann_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth - Name: ann_r50-d8_769x769_40k_cityscapes In Collection: ann Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 588.24 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.89 mIoU(ms+flip): 80.46 Config: configs/ann/ann_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth - Name: ann_r101-d8_769x769_40k_cityscapes In Collection: ann Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 869.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.32 mIoU(ms+flip): 80.94 Config: configs/ann/ann_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth - Name: ann_r50-d8_512x1024_80k_cityscapes In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.34 mIoU(ms+flip): 78.65 Config: configs/ann/ann_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth - Name: ann_r101-d8_512x1024_80k_cityscapes In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.14 mIoU(ms+flip): 78.81 Config: configs/ann/ann_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth - Name: ann_r50-d8_769x769_80k_cityscapes In Collection: ann Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.88 mIoU(ms+flip): 80.57 Config: configs/ann/ann_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth - Name: ann_r101-d8_769x769_80k_cityscapes In Collection: ann Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.8 mIoU(ms+flip): 80.34 Config: configs/ann/ann_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth - Name: ann_r50-d8_512x512_80k_ade20k In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 47.6 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.01 mIoU(ms+flip): 42.3 Config: configs/ann/ann_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth - Name: ann_r101-d8_512x512_80k_ade20k In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 70.82 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.5 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.94 mIoU(ms+flip): 44.18 Config: configs/ann/ann_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth - Name: ann_r50-d8_512x512_160k_ade20k In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.74 mIoU(ms+flip): 42.62 Config: configs/ann/ann_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth - Name: ann_r101-d8_512x512_160k_ade20k In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.94 mIoU(ms+flip): 44.06 Config: configs/ann/ann_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth - Name: ann_r50-d8_512x512_20k_voc12aug In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 47.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.86 mIoU(ms+flip): 76.13 Config: configs/ann/ann_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth - Name: ann_r101-d8_512x512_20k_voc12aug In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 71.74 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.47 mIoU(ms+flip): 78.7 Config: configs/ann/ann_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth - Name: ann_r50-d8_512x512_40k_voc12aug In Collection: ann Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.56 mIoU(ms+flip): 77.51 Config: configs/ann/ann_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth - Name: ann_r101-d8_512x512_40k_voc12aug In Collection: ann Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.7 mIoU(ms+flip): 78.06 Config: configs/ann/ann_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth