_base_ = [ '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_context.py', '../_base_/default_runtime.py' ] model = dict( pretrained='pretrain_model/hrnetv2_w48-d2186c55.pth', backbone=dict( extra=dict( stage2=dict(num_channels=(48, 96)), stage3=dict(num_channels=(48, 96, 192)), stage4=dict(num_channels=(48, 96, 192, 384)))), decode_head=dict( num_classes=60, in_channels=[48, 96, 192, 384], channels=sum([48, 96, 192, 384]))) crop_size = (480, 480) cudnn_benchmark = True # model training and testing settings train_cfg = dict() test_cfg = dict(mode='whole') img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_seg=True), dict(type='Resize', img_scale=(520, 520), ratio_range=(0.5, 2.0)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='RandomCrop', crop_size=crop_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(480, 480), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], flip=True, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001) optimizer_config = dict() # learning policy lr_config = dict( policy='poly', power=0.9, by_epoch=False, ) # runtime settings total_epochs = 200 evaluation = dict(interval=11, metric='mIoU') checkpoint_config = dict(interval=10)