# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmcv.parallel import DataContainer as DC from mmcv.transforms import to_tensor from mmcv.transforms.base import BaseTransform from mmengine.data import PixelData from mmseg.registry import TRANSFORMS from mmseg.structures import SegDataSample @TRANSFORMS.register_module() class PackSegInputs(BaseTransform): """Pack the inputs data for the semantic segmentation. The ``img_meta`` item is always populated. The contents of the ``img_meta`` dictionary depends on ``meta_keys``. By default this includes: - ``img_path``: filename of the image - ``ori_shape``: original shape of the image as a tuple (h, w, c) - ``img_shape``: shape of the image input to the network as a tuple \ (h, w, c). Note that images may be zero padded on the \ bottom/right if the batch tensor is larger than this shape. - ``pad_shape``: shape of padded images - ``scale_factor``: a float indicating the preprocessing scale - ``flip``: a boolean indicating if image flip transform was used - ``flip_direction``: the flipping direction Args: meta_keys (Sequence[str], optional): Meta keys to be packed from ``SegDataSample`` and collected in ``data[img_metas]``. Default: ``('img_path', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction')`` """ def __init__(self, meta_keys=('img_path', 'seg_map_path', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction')): self.meta_keys = meta_keys def transform(self, results: dict) -> dict: """Method to pack the input data. Args: results (dict): Result dict from the data pipeline. Returns: dict: - 'inputs' (obj:`torch.Tensor`): The forward data of models. - 'data_sample' (obj:`SegDataSample`): The annotation info of the sample. """ packed_results = dict() if 'img' in results: img = results['img'] if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) packed_results['inputs'] = to_tensor(img) data_sample = SegDataSample() if 'gt_seg_map' in results: gt_sem_seg_data = dict( data=to_tensor(results['gt_seg_map'][None, ...].astype(np.int64))) data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data) img_meta = {} for key in self.meta_keys: if key in results: img_meta[key] = results[key] data_sample.set_metainfo(img_meta) packed_results['data_sample'] = data_sample return packed_results def __repr__(self) -> str: repr_str = self.__class__.__name__ repr_str += f'(meta_keys={self.meta_keys})' return repr_str @TRANSFORMS.register_module() class ImageToTensor(object): """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = to_tensor(img.transpose(2, 0, 1)) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @TRANSFORMS.register_module() class Transpose(object): """Transpose some results by given keys. Args: keys (Sequence[str]): Keys of results to be transposed. order (Sequence[int]): Order of transpose. """ def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @TRANSFORMS.register_module() class ToDataContainer(object): """Convert results to :obj:`mmcv.DataContainer` by given fields. Args: fields (Sequence[dict]): Each field is a dict like ``dict(key='xxx', **kwargs)``. The ``key`` in result will be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. Default: ``(dict(key='img', stack=True), dict(key='gt_semantic_seg'))``. """ def __init__(self, fields=(dict(key='img', stack=True), dict(key='gt_semantic_seg'))): self.fields = fields def __call__(self, results): """Call function to convert data in results to :obj:`mmcv.DataContainer`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`mmcv.DataContainer`. """ for field in self.fields: field = field.copy() key = field.pop('key') results[key] = DC(results[key], **field) return results def __repr__(self): return self.__class__.__name__ + f'(fields={self.fields})'