Collections: - Name: upernet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/pdf/1807.10221.pdf Title: Unified Perceptual Parsing for Scene Understanding README: configs/upernet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/uper_head.py#L13 Version: v0.17.0 Converted From: Code: https://github.com/CSAILVision/unifiedparsing Models: - Name: upernet_r50_512x1024_40k_cityscapes In Collection: upernet Metadata: backbone: R-50 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 235.29 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.1 mIoU(ms+flip): 78.37 Config: configs/upernet/upernet_r50_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_40k_cityscapes/upernet_r50_512x1024_40k_cityscapes_20200605_094827-aa54cb54.pth - Name: upernet_r101_512x1024_40k_cityscapes In Collection: upernet Metadata: backbone: R-101 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 263.85 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.69 mIoU(ms+flip): 80.11 Config: configs/upernet/upernet_r101_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_40k_cityscapes/upernet_r101_512x1024_40k_cityscapes_20200605_094933-ebce3b10.pth - Name: upernet_r50_769x769_40k_cityscapes In Collection: upernet Metadata: backbone: R-50 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 568.18 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 7.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.98 mIoU(ms+flip): 79.7 Config: configs/upernet/upernet_r50_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_40k_cityscapes/upernet_r50_769x769_40k_cityscapes_20200530_033048-92d21539.pth - Name: upernet_r101_769x769_40k_cityscapes In Collection: upernet Metadata: backbone: R-101 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 641.03 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 mIoU(ms+flip): 80.77 Config: configs/upernet/upernet_r101_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_40k_cityscapes/upernet_r101_769x769_40k_cityscapes_20200530_040819-83c95d01.pth - Name: upernet_r50_512x1024_80k_cityscapes In Collection: upernet Metadata: backbone: R-50 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.19 mIoU(ms+flip): 79.19 Config: configs/upernet/upernet_r50_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x1024_80k_cityscapes/upernet_r50_512x1024_80k_cityscapes_20200607_052207-848beca8.pth - Name: upernet_r101_512x1024_80k_cityscapes In Collection: upernet Metadata: backbone: R-101 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.4 mIoU(ms+flip): 80.46 Config: configs/upernet/upernet_r101_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x1024_80k_cityscapes/upernet_r101_512x1024_80k_cityscapes_20200607_002403-f05f2345.pth - Name: upernet_r50_769x769_80k_cityscapes In Collection: upernet Metadata: backbone: R-50 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.39 mIoU(ms+flip): 80.92 Config: configs/upernet/upernet_r50_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_769x769_80k_cityscapes/upernet_r50_769x769_80k_cityscapes_20200607_005107-82ae7d15.pth - Name: upernet_r101_769x769_80k_cityscapes In Collection: upernet Metadata: backbone: R-101 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.1 mIoU(ms+flip): 81.49 Config: configs/upernet/upernet_r101_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_769x769_80k_cityscapes/upernet_r101_769x769_80k_cityscapes_20200607_001014-082fc334.pth - Name: upernet_r50_512x512_80k_ade20k In Collection: upernet Metadata: backbone: R-50 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 42.74 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 8.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 40.7 mIoU(ms+flip): 41.81 Config: configs/upernet/upernet_r50_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_80k_ade20k/upernet_r50_512x512_80k_ade20k_20200614_144127-ecc8377b.pth - Name: upernet_r101_512x512_80k_ade20k In Collection: upernet Metadata: backbone: R-101 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 49.16 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.91 mIoU(ms+flip): 43.96 Config: configs/upernet/upernet_r101_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_80k_ade20k/upernet_r101_512x512_80k_ade20k_20200614_185117-32e4db94.pth - Name: upernet_r50_512x512_160k_ade20k In Collection: upernet Metadata: backbone: R-50 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.05 mIoU(ms+flip): 42.78 Config: configs/upernet/upernet_r50_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_160k_ade20k/upernet_r50_512x512_160k_ade20k_20200615_184328-8534de8d.pth - Name: upernet_r101_512x512_160k_ade20k In Collection: upernet Metadata: backbone: R-101 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.82 mIoU(ms+flip): 44.85 Config: configs/upernet/upernet_r101_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_160k_ade20k/upernet_r101_512x512_160k_ade20k_20200615_161951-91b32684.pth - Name: upernet_r50_512x512_20k_voc12aug In Collection: upernet Metadata: backbone: R-50 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 43.16 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.4 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 74.82 mIoU(ms+flip): 76.35 Config: configs/upernet/upernet_r50_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_20k_voc12aug/upernet_r50_512x512_20k_voc12aug_20200617_165330-5b5890a7.pth - Name: upernet_r101_512x512_20k_voc12aug In Collection: upernet Metadata: backbone: R-101 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 50.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.1 mIoU(ms+flip): 78.29 Config: configs/upernet/upernet_r101_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_20k_voc12aug/upernet_r101_512x512_20k_voc12aug_20200617_165629-f14e7f27.pth - Name: upernet_r50_512x512_40k_voc12aug In Collection: upernet Metadata: backbone: R-50 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 75.92 mIoU(ms+flip): 77.44 Config: configs/upernet/upernet_r50_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r50_512x512_40k_voc12aug/upernet_r50_512x512_40k_voc12aug_20200613_162257-ca9bcc6b.pth - Name: upernet_r101_512x512_40k_voc12aug In Collection: upernet Metadata: backbone: R-101 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.43 mIoU(ms+flip): 78.56 Config: configs/upernet/upernet_r101_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/upernet/upernet_r101_512x512_40k_voc12aug/upernet_r101_512x512_40k_voc12aug_20200613_163549-e26476ac.pth