Models: - Name: resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024 In Collection: FCN Metadata: backbone: S-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 418.41 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 11.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.56 mIoU(ms+flip): 78.98 Config: configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x1024_80k_cityscapes/fcn_s101-d8_512x1024_80k_cityscapes_20200807_140631-f8d155b3.pth - Name: resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024 In Collection: PSPNet Metadata: backbone: S-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 396.83 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 11.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.57 mIoU(ms+flip): 79.19 Config: configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x1024_80k_cityscapes/pspnet_s101-d8_512x1024_80k_cityscapes_20200807_140631-c75f3b99.pth - Name: resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024 In Collection: DeepLabV3 Metadata: backbone: S-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 531.91 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 11.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.67 mIoU(ms+flip): 80.51 Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x1024_80k_cityscapes/deeplabv3_s101-d8_512x1024_80k_cityscapes_20200807_144429-b73c4270.pth - Name: resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024 In Collection: DeepLabV3+ Metadata: backbone: S-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 423.73 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 13.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.62 mIoU(ms+flip): 80.27 Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x1024_80k_cityscapes/deeplabv3plus_s101-d8_512x1024_80k_cityscapes_20200807_144429-1239eb43.pth - Name: resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512 In Collection: FCN Metadata: backbone: S-101-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 77.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 14.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.62 mIoU(ms+flip): 46.16 Config: configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/fcn_s101-d8_512x512_160k_ade20k/fcn_s101-d8_512x512_160k_ade20k_20200807_145416-d3160329.pth - Name: resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512 In Collection: PSPNet Metadata: backbone: S-101-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 76.8 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 14.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.44 mIoU(ms+flip): 46.28 Config: configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/pspnet_s101-d8_512x512_160k_ade20k/pspnet_s101-d8_512x512_160k_ade20k_20200807_145416-a6daa92a.pth - Name: resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512 In Collection: DeepLabV3 Metadata: backbone: S-101-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 107.76 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 14.6 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.71 mIoU(ms+flip): 46.59 Config: configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3_s101-d8_512x512_160k_ade20k/deeplabv3_s101-d8_512x512_160k_ade20k_20200807_144503-17ecabe5.pth - Name: resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512 In Collection: DeepLabV3+ Metadata: backbone: S-101-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 83.61 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 16.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 46.47 mIoU(ms+flip): 47.27 Config: configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/resnest/deeplabv3plus_s101-d8_512x512_160k_ade20k/deeplabv3plus_s101-d8_512x512_160k_ade20k_20200807_144503-27b26226.pth