# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import PixelData from mmseg.models import SegDataPreProcessor from mmseg.structures import SegDataSample class TestSegDataPreProcessor(TestCase): def test_init(self): # test mean is None processor = SegDataPreProcessor() self.assertTrue(not hasattr(processor, 'mean')) self.assertTrue(processor._enable_normalize is False) # test mean is not None processor = SegDataPreProcessor(mean=[0, 0, 0], std=[1, 1, 1]) self.assertTrue(hasattr(processor, 'mean')) self.assertTrue(hasattr(processor, 'std')) self.assertTrue(processor._enable_normalize) # please specify both mean and std with self.assertRaises(AssertionError): SegDataPreProcessor(mean=[0, 0, 0]) # bgr2rgb and rgb2bgr cannot be set to True at the same time with self.assertRaises(AssertionError): SegDataPreProcessor(bgr_to_rgb=True, rgb_to_bgr=True) def test_forward(self): data_sample = SegDataSample() data_sample.gt_sem_seg = PixelData( **{'data': torch.randint(0, 10, (1, 11, 10))}) processor = SegDataPreProcessor( mean=[0, 0, 0], std=[1, 1, 1], size=(20, 20)) data = { 'inputs': [ torch.randint(0, 256, (3, 11, 10)), torch.randint(0, 256, (3, 11, 10)) ], 'data_samples': [data_sample, data_sample] } out = processor(data, training=True) self.assertEqual(out['inputs'].shape, (2, 3, 20, 20)) self.assertEqual(len(out['data_samples']), 2)