import numpy as np def intersect_and_union(pred_label, label, num_classes, ignore_index): """Calculate intersection and Union. Args: pred_label (ndarray): Prediction segmentation map label (ndarray): Ground truth segmentation map num_classes (int): Number of categories ignore_index (int): Index that will be ignored in evaluation. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes ndarray: The union of prediction and ground truth histogram on all classes ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ mask = (label != ignore_index) pred_label = pred_label[mask] label = label[mask] intersect = pred_label[pred_label == label] area_intersect, _ = np.histogram( intersect, bins=np.arange(num_classes + 1)) area_pred_label, _ = np.histogram( pred_label, bins=np.arange(num_classes + 1)) area_label, _ = np.histogram(label, bins=np.arange(num_classes + 1)) area_union = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index): """Calculate Total Intersection and Union. Args: results (list[ndarray]): List of prediction segmentation maps gt_seg_maps (list[ndarray]): list of ground truth segmentation maps num_classes (int): Number of categories ignore_index (int): Index that will be ignored in evaluation. Returns: ndarray: The intersection of prediction and ground truth histogram on all classes ndarray: The union of prediction and ground truth histogram on all classes ndarray: The prediction histogram on all classes. ndarray: The ground truth histogram on all classes. """ num_imgs = len(results) assert len(gt_seg_maps) == num_imgs total_area_intersect = np.zeros((num_classes, ), dtype=np.float) total_area_union = np.zeros((num_classes, ), dtype=np.float) total_area_pred_label = np.zeros((num_classes, ), dtype=np.float) total_area_label = np.zeros((num_classes, ), dtype=np.float) for i in range(num_imgs): area_intersect, area_union, area_pred_label, area_label = \ intersect_and_union(results[i], gt_seg_maps[i], num_classes, ignore_index=ignore_index) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, \ total_area_pred_label, total_area_label def mean_iou(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray]): List of prediction segmentation maps gt_seg_maps (list[ndarray]): list of ground truth segmentation maps num_classes (int): Number of categories ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ) ndarray: Per category IoU, shape (num_classes, ) """ all_acc, acc, iou = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mIoU'], nan_to_num=nan_to_num) return all_acc, acc, iou def mean_dice(results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None): """Calculate Mean Dice (mDice) Args: results (list[ndarray]): List of prediction segmentation maps gt_seg_maps (list[ndarray]): list of ground truth segmentation maps num_classes (int): Number of categories ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ) ndarray: Per category dice, shape (num_classes, ) """ all_acc, acc, dice = eval_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=['mDice'], nan_to_num=nan_to_num) return all_acc, acc, dice def eval_metrics(results, gt_seg_maps, num_classes, ignore_index, metrics=['mIoU'], nan_to_num=None): """Calculate evaluation metrics Args: results (list[ndarray]): List of prediction segmentation maps gt_seg_maps (list[ndarray]): list of ground truth segmentation maps num_classes (int): Number of categories ignore_index (int): Index that will be ignored in evaluation. metrics (list[str] | str): Metrics to be evaluated, 'mIoU' and 'mDice'. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ) ndarray: Per category evalution metrics, shape (num_classes, ) """ if isinstance(metrics, str): metrics = [metrics] allowed_metrics = ['mIoU', 'mDice'] if not set(metrics).issubset(set(allowed_metrics)): raise KeyError('metrics {} is not supported'.format(metrics)) total_area_intersect, total_area_union, total_area_pred_label, \ total_area_label = total_intersect_and_union(results, gt_seg_maps, num_classes, ignore_index=ignore_index) all_acc = total_area_intersect.sum() / total_area_label.sum() acc = total_area_intersect / total_area_label ret_metrics = [all_acc, acc] for metric in metrics: if metric == 'mIoU': iou = total_area_intersect / total_area_union ret_metrics.append(iou) elif metric == 'mDice': dice = 2 * total_area_intersect / ( total_area_pred_label + total_area_label) ret_metrics.append(dice) if nan_to_num is not None: ret_metrics = [ np.nan_to_num(metric, nan=nan_to_num) for metric in ret_metrics ] return ret_metrics