Collections: - Name: ccnet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/abs/1811.11721 Title: 'CCNet: Criss-Cross Attention for Semantic Segmentation' README: configs/ccnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/apc_head.py#L111 Version: v0.17.0 Converted From: Code: https://github.com/speedinghzl/CCNet Models: - Name: ccnet_r50-d8_512x1024_40k_cityscapes In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 301.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 77.76 mIoU(ms+flip): 78.87 Config: configs/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_40k_cityscapes/ccnet_r50-d8_512x1024_40k_cityscapes_20200616_142517-4123f401.pth - Name: ccnet_r101-d8_512x1024_40k_cityscapes In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 432.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.35 mIoU(ms+flip): 78.19 Config: configs/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_40k_cityscapes/ccnet_r101-d8_512x1024_40k_cityscapes_20200616_142540-a3b84ba6.pth - Name: ccnet_r50-d8_769x769_40k_cityscapes In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 699.3 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.46 mIoU(ms+flip): 79.93 Config: configs/ccnet/ccnet_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_40k_cityscapes/ccnet_r50-d8_769x769_40k_cityscapes_20200616_145125-76d11884.pth - Name: ccnet_r101-d8_769x769_40k_cityscapes In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 990.1 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.7 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.94 mIoU(ms+flip): 78.62 Config: configs/ccnet/ccnet_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_40k_cityscapes/ccnet_r101-d8_769x769_40k_cityscapes_20200617_101428-4f57c8d0.pth - Name: ccnet_r50-d8_512x1024_80k_cityscapes In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.03 mIoU(ms+flip): 80.16 Config: configs/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x1024_80k_cityscapes/ccnet_r50-d8_512x1024_80k_cityscapes_20200617_010421-869a3423.pth - Name: ccnet_r101-d8_512x1024_80k_cityscapes In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.87 mIoU(ms+flip): 79.9 Config: configs/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x1024_80k_cityscapes/ccnet_r101-d8_512x1024_80k_cityscapes_20200617_203935-ffae8917.pth - Name: ccnet_r50-d8_769x769_80k_cityscapes In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.29 mIoU(ms+flip): 81.08 Config: configs/ccnet/ccnet_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_769x769_80k_cityscapes/ccnet_r50-d8_769x769_80k_cityscapes_20200617_010421-73eed8ca.pth - Name: ccnet_r101-d8_769x769_80k_cityscapes In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.45 mIoU(ms+flip): 80.66 Config: configs/ccnet/ccnet_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_769x769_80k_cityscapes/ccnet_r101-d8_769x769_80k_cityscapes_20200618_011502-ad3cd481.pth - Name: ccnet_r50-d8_512x512_80k_ade20k In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 47.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.78 mIoU(ms+flip): 42.98 Config: configs/ccnet/ccnet_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_80k_ade20k/ccnet_r50-d8_512x512_80k_ade20k_20200615_014848-aa37f61e.pth - Name: ccnet_r101-d8_512x512_80k_ade20k In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 70.87 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.2 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.97 mIoU(ms+flip): 45.13 Config: configs/ccnet/ccnet_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_80k_ade20k/ccnet_r101-d8_512x512_80k_ade20k_20200615_014848-1f4929a3.pth - Name: ccnet_r50-d8_512x512_160k_ade20k In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.08 mIoU(ms+flip): 43.13 Config: configs/ccnet/ccnet_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_160k_ade20k/ccnet_r50-d8_512x512_160k_ade20k_20200616_084435-7c97193b.pth - Name: ccnet_r101-d8_512x512_160k_ade20k In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.71 mIoU(ms+flip): 45.04 Config: configs/ccnet/ccnet_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_160k_ade20k/ccnet_r101-d8_512x512_160k_ade20k_20200616_000644-e849e007.pth - Name: ccnet_r50-d8_512x512_20k_voc12aug In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 48.9 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 6.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.17 mIoU(ms+flip): 77.51 Config: configs/ccnet/ccnet_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_20k_voc12aug/ccnet_r50-d8_512x512_20k_voc12aug_20200617_193212-fad81784.pth - Name: ccnet_r101-d8_512x512_20k_voc12aug In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 73.31 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.5 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.27 mIoU(ms+flip): 79.02 Config: configs/ccnet/ccnet_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_20k_voc12aug/ccnet_r101-d8_512x512_20k_voc12aug_20200617_193212-0007b61d.pth - Name: ccnet_r50-d8_512x512_40k_voc12aug In Collection: ccnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 75.96 mIoU(ms+flip): 77.04 Config: configs/ccnet/ccnet_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r50-d8_512x512_40k_voc12aug/ccnet_r50-d8_512x512_40k_voc12aug_20200613_232127-c2a15f02.pth - Name: ccnet_r101-d8_512x512_40k_voc12aug In Collection: ccnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.87 mIoU(ms+flip): 78.9 Config: configs/ccnet/ccnet_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/ccnet/ccnet_r101-d8_512x512_40k_voc12aug/ccnet_r101-d8_512x512_40k_voc12aug_20200613_232127-c30da577.pth