Collections: - Name: ISANet Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug Paper: URL: https://arxiv.org/abs/1907.12273 Title: Interlaced Sparse Self-Attention for Semantic Segmentation README: configs/isanet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58 Version: v0.18.0 Converted From: Code: https://github.com/openseg-group/openseg.pytorch Models: - Name: isanet_r50-d8_4xb2-40k_cityscapes-512x1024 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 343.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.869 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.49 mIoU(ms+flip): 79.44 Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth - Name: isanet_r50-d8_4xb2-80k_cityscapes-512x1024 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 343.64 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.869 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.68 mIoU(ms+flip): 80.25 Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth - Name: isanet_r50-d8_4xb2-40k_cityscapes-769x769 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 649.35 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.759 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.7 mIoU(ms+flip): 80.28 Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth - Name: isanet_r50-d8_4xb2-80k_cityscapes-769x769 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 649.35 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 6.759 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.29 mIoU(ms+flip): 80.53 Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth - Name: isanet_r101-d8_4xb2-40k_cityscapes-512x1024 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 425.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.425 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.58 mIoU(ms+flip): 81.05 Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth - Name: isanet_r101-d8_4xb2-80k_cityscapes-512x1024 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 425.53 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 9.425 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.32 mIoU(ms+flip): 81.58 Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth - Name: isanet_r101-d8_4xb2-40k_cityscapes-769x769 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 1086.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.815 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.68 mIoU(ms+flip): 80.95 Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth - Name: isanet_r101-d8_4xb2-80k_cityscapes-769x769 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 1086.96 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 10.815 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.61 mIoU(ms+flip): 81.59 Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth - Name: isanet_r50-d8_4xb4-80k_ade20k-512x512 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 44.35 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.12 mIoU(ms+flip): 42.35 Config: configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth - Name: isanet_r50-d8_4xb4-160k_ade20k-512x512 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 44.35 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.0 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.59 mIoU(ms+flip): 43.07 Config: configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth - Name: isanet_r101-d8_4xb4-80k_ade20k-512x512 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 94.7 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.562 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.51 mIoU(ms+flip): 44.38 Config: configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth - Name: isanet_r101-d8_4xb4-160k_ade20k-512x512 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 inference time (ms/im): - value: 94.7 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 12.562 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.8 mIoU(ms+flip): 45.4 Config: configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth - Name: isanet_r50-d8_4xb4-20k_voc12aug-512x512 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 43.33 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.78 mIoU(ms+flip): 77.79 Config: configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth - Name: isanet_r50-d8_4xb4-40k_voc12aug-512x512 In Collection: ISANet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 inference time (ms/im): - value: 43.33 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 5.9 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.2 mIoU(ms+flip): 77.22 Config: configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth - Name: isanet_r101-d8_4xb4-20k_voc12aug-512x512 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 134.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.465 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 78.46 mIoU(ms+flip): 79.16 Config: configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth - Name: isanet_r101-d8_4xb4-40k_voc12aug-512x512 In Collection: ISANet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 inference time (ms/im): - value: 134.77 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 9.465 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 78.12 mIoU(ms+flip): 79.04 Config: configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth