# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import math import os import os.path as osp import tempfile import zipfile import mmcv import numpy as np def parse_args(): parser = argparse.ArgumentParser( description='Convert vaihingen dataset to mmsegmentation format') parser.add_argument('dataset_path', help='vaihingen folder path') parser.add_argument('--tmp_dir', help='path of the temporary directory') parser.add_argument('-o', '--out_dir', help='output path') parser.add_argument( '--clip_size', type=int, help='clipped size of image after preparation', default=512) parser.add_argument( '--stride_size', type=int, help='stride of clipping original images', default=256) args = parser.parse_args() return args def clip_big_image(image_path, clip_save_dir, to_label=False): # Original image of Vaihingen dataset is very large, thus pre-processing # of them is adopted. Given fixed clip size and stride size to generate # clipped image, the intersection of width and height is determined. # For example, given one 5120 x 5120 original image, the clip size is # 512 and stride size is 256, thus it would generate 20x20 = 400 images # whose size are all 512x512. image = mmcv.imread(image_path) h, w, c = image.shape cs = args.clip_size ss = args.stride_size num_rows = math.ceil((h - cs) / ss) if math.ceil( (h - cs) / ss) * ss + cs >= h else math.ceil((h - cs) / ss) + 1 num_cols = math.ceil((w - cs) / ss) if math.ceil( (w - cs) / ss) * ss + cs >= w else math.ceil((w - cs) / ss) + 1 x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1)) xmin = x * cs ymin = y * cs xmin = xmin.ravel() ymin = ymin.ravel() xmin_offset = np.where(xmin + cs > w, w - xmin - cs, np.zeros_like(xmin)) ymin_offset = np.where(ymin + cs > h, h - ymin - cs, np.zeros_like(ymin)) boxes = np.stack([ xmin + xmin_offset, ymin + ymin_offset, np.minimum(xmin + cs, w), np.minimum(ymin + cs, h) ], axis=1) if to_label: color_map = np.array([[0, 0, 0], [255, 255, 255], [255, 0, 0], [255, 255, 0], [0, 255, 0], [0, 255, 255], [0, 0, 255]]) flatten_v = np.matmul( image.reshape(-1, c), np.array([2, 3, 4]).reshape(3, 1)) out = np.zeros_like(flatten_v) for idx, class_color in enumerate(color_map): value_idx = np.matmul(class_color, np.array([2, 3, 4]).reshape(3, 1)) out[flatten_v == value_idx] = idx image = out.reshape(h, w) for box in boxes: start_x, start_y, end_x, end_y = box clipped_image = image[start_y:end_y, start_x:end_x] if to_label else image[ start_y:end_y, start_x:end_x, :] area_idx = osp.basename(image_path).split('_')[3].strip('.tif') mmcv.imwrite( clipped_image.astype(np.uint8), osp.join(clip_save_dir, f'{area_idx}_{start_x}_{start_y}_{end_x}_{end_y}.png')) def main(): splits = { 'train': [ 'area1', 'area11', 'area13', 'area15', 'area17', 'area21', 'area23', 'area26', 'area28', 'area3', 'area30', 'area32', 'area34', 'area37', 'area5', 'area7' ], 'val': [ 'area6', 'area24', 'area35', 'area16', 'area14', 'area22', 'area10', 'area4', 'area2', 'area20', 'area8', 'area31', 'area33', 'area27', 'area38', 'area12', 'area29' ], } dataset_path = args.dataset_path if args.out_dir is None: out_dir = osp.join('data', 'vaihingen') else: out_dir = args.out_dir print('Making directories...') mmcv.mkdir_or_exist(osp.join(out_dir, 'img_dir', 'train')) mmcv.mkdir_or_exist(osp.join(out_dir, 'img_dir', 'val')) mmcv.mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'train')) mmcv.mkdir_or_exist(osp.join(out_dir, 'ann_dir', 'val')) zipp_list = glob.glob(os.path.join(dataset_path, '*.zip')) print('Find the data', zipp_list) with tempfile.TemporaryDirectory(dir=args.tmp_dir) as tmp_dir: for zipp in zipp_list: zip_file = zipfile.ZipFile(zipp) zip_file.extractall(tmp_dir) src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) if 'ISPRS_semantic_labeling_Vaihingen' in zipp: src_path_list = glob.glob( os.path.join(os.path.join(tmp_dir, 'top'), '*.tif')) if 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE' in zipp: # noqa src_path_list = glob.glob(os.path.join(tmp_dir, '*.tif')) # delete unused area9 ground truth for area_ann in src_path_list: if 'area9' in area_ann: src_path_list.remove(area_ann) prog_bar = mmcv.ProgressBar(len(src_path_list)) for i, src_path in enumerate(src_path_list): area_idx = osp.basename(src_path).split('_')[3].strip('.tif') data_type = 'train' if area_idx in splits['train'] else 'val' if 'noBoundary' in src_path: dst_dir = osp.join(out_dir, 'ann_dir', data_type) clip_big_image(src_path, dst_dir, to_label=True) else: dst_dir = osp.join(out_dir, 'img_dir', data_type) clip_big_image(src_path, dst_dir, to_label=False) prog_bar.update() print('Removing the temporary files...') print('Done!') if __name__ == '__main__': args = parse_args() main()