Collections: - Metadata: Training Data: - Cityscapes Name: fastscnn Models: - Config: configs/fastscnn/fast_scnn_lr0.12_8x4_160k_cityscapes.py In Collection: fastscnn Metadata: backbone: Fast-SCNN crop size: (512,1024) inference time (ms/im): - backend: PyTorch batch size: 1 hardware: V100 mode: FP32 resolution: (512,1024) value: 17.71 lr schd: 160000 memory (GB): 3.3 Name: fast_scnn_lr0.12_8x4_160k_cityscapes Results: Dataset: Cityscapes Metrics: mIoU: 70.96 mIoU(ms+flip): 72.65 Task: Semantic Segmentation Weights: https://download.openmmlab.com/mmsegmentation/v0.5/fast_scnn/fast_scnn_lr0.12_8x4_160k_cityscapes/fast_scnn_lr0.12_8x4_160k_cityscapes_20210630_164853-0cec9937.pth