Collections: - Name: deeplabv3plus Metadata: Training Data: - Cityscapes - ADE20K - Pascal VOC 2012 + Aug - Pascal Context - Pascal Context 59 - LoveDA Paper: URL: https://arxiv.org/abs/1802.02611 Title: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation README: configs/deeplabv3plus/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30 Version: v0.17.0 Converted From: Code: https://github.com/tensorflow/models/tree/master/research/deeplab Models: - Name: deeplabv3plus_r50-d8_512x1024_40k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 253.81 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 7.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.61 mIoU(ms+flip): 81.01 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth - Name: deeplabv3plus_r101-d8_512x1024_40k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 384.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 11.0 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.21 mIoU(ms+flip): 81.82 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth - Name: deeplabv3plus_r50-d8_769x769_40k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 581.4 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.97 mIoU(ms+flip): 80.46 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth - Name: deeplabv3plus_r101-d8_769x769_40k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 869.57 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 12.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.46 mIoU(ms+flip): 80.5 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth - Name: deeplabv3plus_r18-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-18-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 70.08 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 2.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.89 mIoU(ms+flip): 78.76 Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth - Name: deeplabv3plus_r50-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.09 mIoU(ms+flip): 81.13 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth - Name: deeplabv3plus_r101-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.97 mIoU(ms+flip): 82.03 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth - Name: deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 127.06 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (512,1024) Training Memory (GB): 6.35 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.46 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth - Name: deeplabv3plus_r18-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-18-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 174.22 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 2.5 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.26 mIoU(ms+flip): 77.91 Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth - Name: deeplabv3plus_r50-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.83 mIoU(ms+flip): 81.48 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth - Name: deeplabv3plus_r101-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.98 mIoU(ms+flip): 82.18 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth - Name: deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D16-MG124 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 133.69 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 5.8 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.09 mIoU(ms+flip): 80.36 Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth - Name: deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101-D16-MG124 crop size: (512,1024) lr schd: 80000 Training Memory (GB): 9.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.9 mIoU(ms+flip): 81.33 Config: configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth - Name: deeplabv3plus_r18b-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-18b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 66.89 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 2.1 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.87 mIoU(ms+flip): 77.52 Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth - Name: deeplabv3plus_r50b-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 253.81 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 7.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.28 mIoU(ms+flip): 81.44 Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth - Name: deeplabv3plus_r101b-d8_512x1024_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101b-D8 crop size: (512,1024) lr schd: 80000 inference time (ms/im): - value: 384.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) Training Memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.16 mIoU(ms+flip): 81.41 Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth - Name: deeplabv3plus_r18b-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-18b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 167.79 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 2.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.36 mIoU(ms+flip): 78.24 Config: configs/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth - Name: deeplabv3plus_r50b-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-50b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 581.4 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 8.4 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.41 mIoU(ms+flip): 80.56 Config: configs/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth - Name: deeplabv3plus_r101b-d8_769x769_80k_cityscapes In Collection: deeplabv3plus Metadata: backbone: R-101b-D8 crop size: (769,769) lr schd: 80000 inference time (ms/im): - value: 909.09 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) Training Memory (GB): 12.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.88 mIoU(ms+flip): 81.46 Config: configs/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth - Name: deeplabv3plus_r50-d8_512x512_80k_ade20k In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 47.6 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 10.6 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 42.72 mIoU(ms+flip): 43.75 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth - Name: deeplabv3plus_r101-d8_512x512_80k_ade20k In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 70.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 14.1 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.6 mIoU(ms+flip): 46.06 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth - Name: deeplabv3plus_r50-d8_512x512_160k_ade20k In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.95 mIoU(ms+flip): 44.93 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth - Name: deeplabv3plus_r101-d8_512x512_160k_ade20k In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 45.47 mIoU(ms+flip): 46.35 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth - Name: deeplabv3plus_r50-d8_512x512_20k_voc12aug In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 47.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.6 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 75.93 mIoU(ms+flip): 77.5 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth - Name: deeplabv3plus_r101-d8_512x512_20k_voc12aug In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 20000 inference time (ms/im): - value: 72.05 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 11.0 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 77.22 mIoU(ms+flip): 78.59 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth - Name: deeplabv3plus_r50-d8_512x512_40k_voc12aug In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 76.81 mIoU(ms+flip): 77.57 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth - Name: deeplabv3plus_r101-d8_512x512_40k_voc12aug In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal VOC 2012 + Aug Metrics: mIoU: 78.62 mIoU(ms+flip): 79.53 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth - Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 inference time (ms/im): - value: 110.01 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (480,480) Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 47.3 mIoU(ms+flip): 48.47 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context Metrics: mIoU: 47.23 mIoU(ms+flip): 48.26 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth - Name: deeplabv3plus_r101-d8_480x480_40k_pascal_context_59 In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 40000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 52.86 mIoU(ms+flip): 54.54 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth - Name: deeplabv3plus_r101-d8_480x480_80k_pascal_context_59 In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (480,480) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Pascal Context 59 Metrics: mIoU: 53.2 mIoU(ms+flip): 54.67 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth - Name: deeplabv3plus_r18-d8_512x512_80k_loveda In Collection: deeplabv3plus Metadata: backbone: R-18-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 39.11 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 1.93 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 50.28 mIoU(ms+flip): 50.47 Config: configs/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth - Name: deeplabv3plus_r50-d8_512x512_80k_loveda In Collection: deeplabv3plus Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 166.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 7.37 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 50.99 mIoU(ms+flip): 50.65 Config: configs/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth - Name: deeplabv3plus_r101-d8_512x512_80k_loveda In Collection: deeplabv3plus Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 230.95 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) Training Memory (GB): 10.84 Results: - Task: Semantic Segmentation Dataset: LoveDA Metrics: mIoU: 51.47 mIoU(ms+flip): 51.32 Config: configs/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth