Models: - Name: upernet_beit-base_8x2_640x640_160k_ade20k In Collection: UPerNet Metadata: backbone: BEiT-B crop size: (640,640) lr schd: 160000 inference time (ms/im): - value: 500.0 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (640,640) Training Memory (GB): 15.88 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 53.08 mIoU(ms+flip): 53.84 Config: configs/beit/upernet_beit-base_8x2_640x640_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth - Name: upernet_beit-large_fp16_8x1_640x640_160k_ade20k In Collection: UPerNet Metadata: backbone: BEiT-L crop size: (640,640) lr schd: 320000 inference time (ms/im): - value: 1041.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP16 resolution: (640,640) Training Memory (GB): 22.64 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 56.33 mIoU(ms+flip): 56.84 Config: configs/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth