# Tutorial 2: Customize Datasets ## Data configuration `data` in config file is the variable for data configuration, to define the arguments that are used in datasets and dataloaders. Here is an example of data configuration: ```python data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type='ADE20KDataset', data_root='data/ade/ADEChallengeData2016', img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type='ADE20KDataset', data_root='data/ade/ADEChallengeData2016', img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type='ADE20KDataset', data_root='data/ade/ADEChallengeData2016', img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline)) ``` - `train`, `val` and `test`: The [`config`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/config.md)s to build dataset instances for model training, validation and testing by using [`build and registry`](https://github.com/open-mmlab/mmcv/blob/master/docs/en/understand_mmcv/registry.md) mechanism. - `samples_per_gpu`: How many samples per batch and per gpu to load during model training, and the `batch_size` of training is equal to `samples_per_gpu` times gpu number, e.g. when using 8 gpus for distributed data parallel training and `samples_per_gpu=4`, the `batch_size` is `8*4=32`. If you would like to define `batch_size` for testing and validation, please use `test_dataloader` and `val_dataloader` with mmseg >=0.24.1. - `workers_per_gpu`: How many subprocesses per gpu to use for data loading. `0` means that the data will be loaded in the main process. **Note:** `samples_per_gpu` only works for model training, and the default setting of `samples_per_gpu` is 1 in mmseg when model testing and validation (DO NOT support batch inference yet). **Note:** before v0.24.1, except `train`, `val` `test`, `samples_per_gpu` and `workers_per_gpu`, the other keys in `data` must be the input keyword arguments for `dataloader` in pytorch, and the dataloaders used for model training, validation and testing have the same input arguments. In v0.24.1, mmseg supports to use `train_dataloader`, `test_dataloader` and `val_dataloader` to specify different keyword arguments, and still supports the overall arguments definition but the specific dataloader setting has a higher priority. Here is an example for specific dataloader: ```python data = dict( samples_per_gpu=4, workers_per_gpu=4, shuffle=True, train=dict(type='xxx', ...), val=dict(type='xxx', ...), test=dict(type='xxx', ...), # Use different batch size during validation and testing. val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False), test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False)) ``` Assume only one gpu used for model training and testing, as the priority of the overall arguments definition is low, the batch_size for training is `4` and dataset will be shuffled, and batch_size for testing and validation is `1`, and dataset will not be shuffled. To make data configuration much clearer, we recommend use specific dataloader setting instead of overall dataloader setting after v0.24.1, just like: ```python data = dict( train=dict(type='xxx', ...), val=dict(type='xxx', ...), test=dict(type='xxx', ...), # Use specific dataloader setting train_dataloader=dict(samples_per_gpu=4, workers_per_gpu=4, shuffle=True), val_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False), test_dataloader=dict(samples_per_gpu=1, workers_per_gpu=4, shuffle=False)) ``` **Note:** in model training, default values in the script of mmseg for dataloader are `shuffle=True, and drop_last=True`, in model validation and testing, default values are `shuffle=False, and drop_last=False` ## Customize datasets by reorganizing data The simplest way is to convert your dataset to organize your data into folders. An example of file structure is as followed. ```none ├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val ``` A training pair will consist of the files with same suffix in img_dir/ann_dir. If `split` argument is given, only part of the files in img_dir/ann_dir will be loaded. We may specify the prefix of files we would like to be included in the split txt. More specifically, for a split txt like following, ```none xxx zzz ``` Only `data/my_dataset/img_dir/train/xxx{img_suffix}`, `data/my_dataset/img_dir/train/zzz{img_suffix}`, `data/my_dataset/ann_dir/train/xxx{seg_map_suffix}`, `data/my_dataset/ann_dir/train/zzz{seg_map_suffix}` will be loaded. :::{note} The annotations are images of shape (H, W), the value pixel should fall in range `[0, num_classes - 1]`. You may use `'P'` mode of [pillow](https://pillow.readthedocs.io/en/stable/handbook/concepts.html#palette) to create your annotation image with color. ::: ## Customize datasets by mixing dataset MMSegmentation also supports to mix dataset for training. Currently it supports to concat, repeat and multi-image mix datasets. ### Repeat dataset We use `RepeatDataset` as wrapper to repeat the dataset. For example, suppose the original dataset is `Dataset_A`, to repeat it, the config looks like the following ```python dataset_A_train = dict( type='RepeatDataset', times=N, dataset=dict( # This is the original config of Dataset_A type='Dataset_A', ... pipeline=train_pipeline ) ) ``` ### Concatenate dataset There 2 ways to concatenate the dataset. 1. If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following. 1. You may concatenate two `ann_dir`. ```python dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], pipeline=train_pipeline ) ``` 2. You may concatenate two `split`. ```python dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = 'anno_dir', split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline ) ``` 3. You may concatenate two `ann_dir` and `split` simultaneously. ```python dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline ) ``` In this case, `ann_dir_1` and `ann_dir_2` are corresponding to `split_1.txt` and `split_2.txt`. 2. In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following. ```python dataset_A_train = dict() dataset_B_train = dict() data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test ) ``` A more complex example that repeats `Dataset_A` and `Dataset_B` by N and M times, respectively, and then concatenates the repeated datasets is as the following. ```python dataset_A_train = dict( type='RepeatDataset', times=N, dataset=dict( type='Dataset_A', ... pipeline=train_pipeline ) ) dataset_A_val = dict( ... pipeline=test_pipeline ) dataset_A_test = dict( ... pipeline=test_pipeline ) dataset_B_train = dict( type='RepeatDataset', times=M, dataset=dict( type='Dataset_B', ... pipeline=train_pipeline ) ) data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test ) ``` ### Multi-image Mix Dataset We use `MultiImageMixDataset` as a wrapper to mix images from multiple datasets. `MultiImageMixDataset` can be used by multiple images mixed data augmentation like mosaic and mixup. An example of using `MultiImageMixDataset` with `Mosaic` data augmentation: ```python train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='RandomMosaic', prob=1), dict(type='Resize', img_scale=(1024, 512), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] train_dataset = dict( type='MultiImageMixDataset', dataset=dict( classes=classes, palette=palette, type=dataset_type, reduce_zero_label=False, img_dir=data_root + "images/train", ann_dir=data_root + "annotations/train", pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), ] ), pipeline=train_pipeline ) ```