Collections: - Name: dnlnet Metadata: Training Data: - Cityscapes - ADE20K Paper: URL: https://arxiv.org/abs/2006.06668 Title: Disentangled Non-Local Neural Networks README: configs/dnlnet/README.md Code: URL: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dnl_head.py#L88 Version: v0.17.0 Converted From: Code: https://github.com/yinmh17/DNL-Semantic-Segmentation Models: - Name: dnl_r50-d8_512x1024_40k_cityscapes In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 390.62 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 7.3 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.61 Config: configs/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_40k_cityscapes/dnl_r50-d8_512x1024_40k_cityscapes_20200904_233629-53d4ea93.pth - Name: dnl_r101-d8_512x1024_40k_cityscapes In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 40000 inference time (ms/im): - value: 510.2 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,1024) memory (GB): 10.9 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.31 Config: configs/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_40k_cityscapes/dnl_r101-d8_512x1024_40k_cityscapes_20200904_233629-9928ffef.pth - Name: dnl_r50-d8_769x769_40k_cityscapes In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 666.67 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) memory (GB): 9.2 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 78.44 mIoU(ms+flip): 80.27 Config: configs/dnlnet/dnl_r50-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_40k_cityscapes/dnl_r50-d8_769x769_40k_cityscapes_20200820_232206-0f283785.pth - Name: dnl_r101-d8_769x769_40k_cityscapes In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 40000 inference time (ms/im): - value: 980.39 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (769,769) memory (GB): 12.6 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 76.39 mIoU(ms+flip): 77.77 Config: configs/dnlnet/dnl_r101-d8_769x769_40k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_40k_cityscapes/dnl_r101-d8_769x769_40k_cityscapes_20200820_171256-76c596df.pth - Name: dnl_r50-d8_512x1024_80k_cityscapes In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.33 Config: configs/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x1024_80k_cityscapes/dnl_r50-d8_512x1024_80k_cityscapes_20200904_233629-58b2f778.pth - Name: dnl_r101-d8_512x1024_80k_cityscapes In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (512,1024) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 80.41 Config: configs/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x1024_80k_cityscapes/dnl_r101-d8_512x1024_80k_cityscapes_20200904_233629-758e2dd4.pth - Name: dnl_r50-d8_769x769_80k_cityscapes In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.36 mIoU(ms+flip): 80.7 Config: configs/dnlnet/dnl_r50-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_769x769_80k_cityscapes/dnl_r50-d8_769x769_80k_cityscapes_20200820_011925-366bc4c7.pth - Name: dnl_r101-d8_769x769_80k_cityscapes In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (769,769) lr schd: 80000 Results: - Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 79.41 mIoU(ms+flip): 80.68 Config: configs/dnlnet/dnl_r101-d8_769x769_80k_cityscapes.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_769x769_80k_cityscapes/dnl_r101-d8_769x769_80k_cityscapes_20200821_051111-95ff84ab.pth - Name: dnl_r50-d8_512x512_80k_ade20k In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 48.4 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 8.8 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.76 mIoU(ms+flip): 42.99 Config: configs/dnlnet/dnl_r50-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_80k_ade20k/dnl_r50-d8_512x512_80k_ade20k_20200826_183354-1cf6e0c1.pth - Name: dnl_r101-d8_512x512_80k_ade20k In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 80000 inference time (ms/im): - value: 79.74 hardware: V100 backend: PyTorch batch size: 1 mode: FP32 resolution: (512,512) memory (GB): 12.8 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 43.76 mIoU(ms+flip): 44.91 Config: configs/dnlnet/dnl_r101-d8_512x512_80k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_80k_ade20k/dnl_r101-d8_512x512_80k_ade20k_20200826_183354-d820d6ea.pth - Name: dnl_r50-d8_512x512_160k_ade20k In Collection: dnlnet Metadata: backbone: R-50-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 41.87 mIoU(ms+flip): 43.01 Config: configs/dnlnet/dnl_r50-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r50-d8_512x512_160k_ade20k/dnl_r50-d8_512x512_160k_ade20k_20200826_183350-37837798.pth - Name: dnl_r101-d8_512x512_160k_ade20k In Collection: dnlnet Metadata: backbone: R-101-D8 crop size: (512,512) lr schd: 160000 Results: - Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 44.25 mIoU(ms+flip): 45.78 Config: configs/dnlnet/dnl_r101-d8_512x512_160k_ade20k.py Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dnlnet/dnl_r101-d8_512x512_160k_ade20k/dnl_r101-d8_512x512_160k_ade20k_20200826_183350-ed522c61.pth