_base_ = [ '../_base_/models/fast_scnn.py', '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py' ] crop_size = (512, 1024) cudnn_benchmark = True # model training and testing settings train_cfg = dict() test_cfg = dict(mode='whole') # Here: What is parameter 'with_seg'? img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile', to_float32=True), dict(type='LoadAnnotations'), # with_seg=True dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='RandomCrop', crop_size=crop_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.045, momentum=0.9, weight_decay=4e-5) optimizer_config = dict() # learning policy lr_config = dict( policy='poly', power=0.9, by_epoch=False, ) # runtime settings # total_epochs = 1000 total_iters = 100000 evaluation = dict(interval=2000, metric='mIoU') checkpoint_config = dict(interval=2000) # log config: log by iter. log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook', by_epoch=False)])